online-ebranchformer-transducer-model.cc
13.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
// sherpa-onnx/csrc/online-ebranchformer-transducer-model.cc
//
// Copyright (c) 2023 Xiaomi Corporation
// 2025 Brno University of Technology (author: Karel Vesely)
#include "sherpa-onnx/csrc/online-ebranchformer-transducer-model.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <memory>
#include <numeric>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#if __ANDROID_API__ >= 9
#include "android/asset_manager.h"
#include "android/asset_manager_jni.h"
#endif
#if __OHOS__
#include "rawfile/raw_file_manager.h"
#endif
#include "onnxruntime_cxx_api.h" // NOLINT
#include "sherpa-onnx/csrc/cat.h"
#include "sherpa-onnx/csrc/file-utils.h"
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/online-transducer-decoder.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
#include "sherpa-onnx/csrc/session.h"
#include "sherpa-onnx/csrc/text-utils.h"
#include "sherpa-onnx/csrc/unbind.h"
namespace sherpa_onnx {
OnlineEbranchformerTransducerModel::OnlineEbranchformerTransducerModel(
const OnlineModelConfig &config)
: env_(ORT_LOGGING_LEVEL_ERROR),
encoder_sess_opts_(GetSessionOptions(config)),
decoder_sess_opts_(GetSessionOptions(config, "decoder")),
joiner_sess_opts_(GetSessionOptions(config, "joiner")),
config_(config),
allocator_{} {
{
auto buf = ReadFile(config.transducer.encoder);
InitEncoder(buf.data(), buf.size());
}
{
auto buf = ReadFile(config.transducer.decoder);
InitDecoder(buf.data(), buf.size());
}
{
auto buf = ReadFile(config.transducer.joiner);
InitJoiner(buf.data(), buf.size());
}
}
template <typename Manager>
OnlineEbranchformerTransducerModel::OnlineEbranchformerTransducerModel(
Manager *mgr, const OnlineModelConfig &config)
: env_(ORT_LOGGING_LEVEL_ERROR),
config_(config),
encoder_sess_opts_(GetSessionOptions(config)),
decoder_sess_opts_(GetSessionOptions(config)),
joiner_sess_opts_(GetSessionOptions(config)),
allocator_{} {
{
auto buf = ReadFile(mgr, config.transducer.encoder);
InitEncoder(buf.data(), buf.size());
}
{
auto buf = ReadFile(mgr, config.transducer.decoder);
InitDecoder(buf.data(), buf.size());
}
{
auto buf = ReadFile(mgr, config.transducer.joiner);
InitJoiner(buf.data(), buf.size());
}
}
void OnlineEbranchformerTransducerModel::InitEncoder(void *model_data,
size_t model_data_length) {
encoder_sess_ = std::make_unique<Ort::Session>(
env_, model_data, model_data_length, encoder_sess_opts_);
GetInputNames(encoder_sess_.get(), &encoder_input_names_,
&encoder_input_names_ptr_);
GetOutputNames(encoder_sess_.get(), &encoder_output_names_,
&encoder_output_names_ptr_);
// get meta data
Ort::ModelMetadata meta_data = encoder_sess_->GetModelMetadata();
if (config_.debug) {
std::ostringstream os;
os << "---encoder---\n";
PrintModelMetadata(os, meta_data);
#if __OHOS__
SHERPA_ONNX_LOGE("%{public}s", os.str().c_str());
#else
SHERPA_ONNX_LOGE("%s", os.str().c_str());
#endif
}
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
SHERPA_ONNX_READ_META_DATA(decode_chunk_len_, "decode_chunk_len");
SHERPA_ONNX_READ_META_DATA(T_, "T");
SHERPA_ONNX_READ_META_DATA(num_hidden_layers_, "num_hidden_layers");
SHERPA_ONNX_READ_META_DATA(hidden_size_, "hidden_size");
SHERPA_ONNX_READ_META_DATA(intermediate_size_, "intermediate_size");
SHERPA_ONNX_READ_META_DATA(csgu_kernel_size_, "csgu_kernel_size");
SHERPA_ONNX_READ_META_DATA(merge_conv_kernel_, "merge_conv_kernel");
SHERPA_ONNX_READ_META_DATA(left_context_len_, "left_context_len");
SHERPA_ONNX_READ_META_DATA(num_heads_, "num_heads");
SHERPA_ONNX_READ_META_DATA(head_dim_, "head_dim");
if (config_.debug) {
#if __OHOS__
SHERPA_ONNX_LOGE("T: %{public}d", T_);
SHERPA_ONNX_LOGE("decode_chunk_len_: %{public}d", decode_chunk_len_);
SHERPA_ONNX_LOGE("num_hidden_layers_: %{public}d", num_hidden_layers_);
SHERPA_ONNX_LOGE("hidden_size_: %{public}d", hidden_size_);
SHERPA_ONNX_LOGE("intermediate_size_: %{public}d", intermediate_size_);
SHERPA_ONNX_LOGE("csgu_kernel_size_: %{public}d", csgu_kernel_size_);
SHERPA_ONNX_LOGE("merge_conv_kernel_: %{public}d", merge_conv_kernel_);
SHERPA_ONNX_LOGE("left_context_len_: %{public}d", left_context_len_);
SHERPA_ONNX_LOGE("num_heads_: %{public}d", num_heads_);
SHERPA_ONNX_LOGE("head_dim_: %{public}d", head_dim_);
#else
SHERPA_ONNX_LOGE("T: %d", T_);
SHERPA_ONNX_LOGE("decode_chunk_len_: %d", decode_chunk_len_);
SHERPA_ONNX_LOGE("num_hidden_layers_: %d", num_hidden_layers_);
SHERPA_ONNX_LOGE("hidden_size_: %d", hidden_size_);
SHERPA_ONNX_LOGE("intermediate_size_: %d", intermediate_size_);
SHERPA_ONNX_LOGE("csgu_kernel_size_: %d", csgu_kernel_size_);
SHERPA_ONNX_LOGE("merge_conv_kernel_: %d", merge_conv_kernel_);
SHERPA_ONNX_LOGE("left_context_len_: %d", left_context_len_);
SHERPA_ONNX_LOGE("num_heads_: %d", num_heads_);
SHERPA_ONNX_LOGE("head_dim_: %d", head_dim_);
#endif
}
}
void OnlineEbranchformerTransducerModel::InitDecoder(void *model_data,
size_t model_data_length) {
decoder_sess_ = std::make_unique<Ort::Session>(
env_, model_data, model_data_length, decoder_sess_opts_);
GetInputNames(decoder_sess_.get(), &decoder_input_names_,
&decoder_input_names_ptr_);
GetOutputNames(decoder_sess_.get(), &decoder_output_names_,
&decoder_output_names_ptr_);
// get meta data
Ort::ModelMetadata meta_data = decoder_sess_->GetModelMetadata();
if (config_.debug) {
std::ostringstream os;
os << "---decoder---\n";
PrintModelMetadata(os, meta_data);
SHERPA_ONNX_LOGE("%s", os.str().c_str());
}
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
SHERPA_ONNX_READ_META_DATA(vocab_size_, "vocab_size");
SHERPA_ONNX_READ_META_DATA(context_size_, "context_size");
}
void OnlineEbranchformerTransducerModel::InitJoiner(void *model_data,
size_t model_data_length) {
joiner_sess_ = std::make_unique<Ort::Session>(
env_, model_data, model_data_length, joiner_sess_opts_);
GetInputNames(joiner_sess_.get(), &joiner_input_names_,
&joiner_input_names_ptr_);
GetOutputNames(joiner_sess_.get(), &joiner_output_names_,
&joiner_output_names_ptr_);
// get meta data
Ort::ModelMetadata meta_data = joiner_sess_->GetModelMetadata();
if (config_.debug) {
std::ostringstream os;
os << "---joiner---\n";
PrintModelMetadata(os, meta_data);
SHERPA_ONNX_LOGE("%s", os.str().c_str());
}
}
std::vector<Ort::Value> OnlineEbranchformerTransducerModel::StackStates(
const std::vector<std::vector<Ort::Value>> &states) const {
int32_t batch_size = static_cast<int32_t>(states.size());
std::vector<const Ort::Value *> buf(batch_size);
auto allocator =
const_cast<OnlineEbranchformerTransducerModel *>(this)->allocator_;
std::vector<Ort::Value> ans;
int32_t num_states = static_cast<int32_t>(states[0].size());
ans.reserve(num_states);
for (int32_t i = 0; i != num_hidden_layers_; ++i) {
{ // cached_key
for (int32_t n = 0; n != batch_size; ++n) {
buf[n] = &states[n][4 * i];
}
auto v = Cat(allocator, buf, /* axis */ 0);
ans.push_back(std::move(v));
}
{ // cached_value
for (int32_t n = 0; n != batch_size; ++n) {
buf[n] = &states[n][4 * i + 1];
}
auto v = Cat(allocator, buf, 0);
ans.push_back(std::move(v));
}
{ // cached_conv
for (int32_t n = 0; n != batch_size; ++n) {
buf[n] = &states[n][4 * i + 2];
}
auto v = Cat(allocator, buf, 0);
ans.push_back(std::move(v));
}
{ // cached_conv_fusion
for (int32_t n = 0; n != batch_size; ++n) {
buf[n] = &states[n][4 * i + 3];
}
auto v = Cat(allocator, buf, 0);
ans.push_back(std::move(v));
}
}
{ // processed_lens
for (int32_t n = 0; n != batch_size; ++n) {
buf[n] = &states[n][num_states - 1];
}
auto v = Cat<int64_t>(allocator, buf, 0);
ans.push_back(std::move(v));
}
return ans;
}
std::vector<std::vector<Ort::Value>>
OnlineEbranchformerTransducerModel::UnStackStates(
const std::vector<Ort::Value> &states) const {
assert(static_cast<int32_t>(states.size()) == num_hidden_layers_ * 4 + 1);
int32_t batch_size = states[0].GetTensorTypeAndShapeInfo().GetShape()[0];
auto allocator =
const_cast<OnlineEbranchformerTransducerModel *>(this)->allocator_;
std::vector<std::vector<Ort::Value>> ans;
ans.resize(batch_size);
for (int32_t i = 0; i != num_hidden_layers_; ++i) {
{ // cached_key
auto v = Unbind(allocator, &states[i * 4], /* axis */ 0);
assert(static_cast<int32_t>(v.size()) == batch_size);
for (int32_t n = 0; n != batch_size; ++n) {
ans[n].push_back(std::move(v[n]));
}
}
{ // cached_value
auto v = Unbind(allocator, &states[i * 4 + 1], 0);
assert(static_cast<int32_t>(v.size()) == batch_size);
for (int32_t n = 0; n != batch_size; ++n) {
ans[n].push_back(std::move(v[n]));
}
}
{ // cached_conv
auto v = Unbind(allocator, &states[i * 4 + 2], 0);
assert(static_cast<int32_t>(v.size()) == batch_size);
for (int32_t n = 0; n != batch_size; ++n) {
ans[n].push_back(std::move(v[n]));
}
}
{ // cached_conv_fusion
auto v = Unbind(allocator, &states[i * 4 + 3], 0);
assert(static_cast<int32_t>(v.size()) == batch_size);
for (int32_t n = 0; n != batch_size; ++n) {
ans[n].push_back(std::move(v[n]));
}
}
}
{ // processed_lens
auto v = Unbind<int64_t>(allocator, &states.back(), 0);
assert(static_cast<int32_t>(v.size()) == batch_size);
for (int32_t n = 0; n != batch_size; ++n) {
ans[n].push_back(std::move(v[n]));
}
}
return ans;
}
std::vector<Ort::Value>
OnlineEbranchformerTransducerModel::GetEncoderInitStates() {
std::vector<Ort::Value> ans;
ans.reserve(num_hidden_layers_ * 4 + 1);
int32_t left_context_conv = csgu_kernel_size_ - 1;
int32_t channels_conv = intermediate_size_ / 2;
int32_t left_context_conv_fusion = merge_conv_kernel_ - 1;
int32_t channels_conv_fusion = 2 * hidden_size_;
for (int32_t i = 0; i != num_hidden_layers_; ++i) {
{ // cached_key_{i}
std::array<int64_t, 4> s{1, num_heads_, left_context_len_, head_dim_};
auto v =
Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
Fill(&v, 0);
ans.push_back(std::move(v));
}
{ // cahced_value_{i}
std::array<int64_t, 4> s{1, num_heads_, left_context_len_, head_dim_};
auto v =
Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
Fill(&v, 0);
ans.push_back(std::move(v));
}
{ // cached_conv_{i}
std::array<int64_t, 3> s{1, channels_conv, left_context_conv};
auto v =
Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
Fill(&v, 0);
ans.push_back(std::move(v));
}
{ // cached_conv_fusion_{i}
std::array<int64_t, 3> s{1, channels_conv_fusion, left_context_conv_fusion};
auto v =
Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
Fill(&v, 0);
ans.push_back(std::move(v));
}
} // num_hidden_layers_
{ // processed_lens
std::array<int64_t, 1> s{1};
auto v = Ort::Value::CreateTensor<int64_t>(allocator_, s.data(), s.size());
Fill<int64_t>(&v, 0);
ans.push_back(std::move(v));
}
return ans;
}
std::pair<Ort::Value, std::vector<Ort::Value>>
OnlineEbranchformerTransducerModel::RunEncoder(Ort::Value features,
std::vector<Ort::Value> states,
Ort::Value /* processed_frames */) {
std::vector<Ort::Value> encoder_inputs;
encoder_inputs.reserve(1 + states.size());
encoder_inputs.push_back(std::move(features));
for (auto &v : states) {
encoder_inputs.push_back(std::move(v));
}
auto encoder_out = encoder_sess_->Run(
{}, encoder_input_names_ptr_.data(), encoder_inputs.data(),
encoder_inputs.size(), encoder_output_names_ptr_.data(),
encoder_output_names_ptr_.size());
std::vector<Ort::Value> next_states;
next_states.reserve(states.size());
for (int32_t i = 1; i != static_cast<int32_t>(encoder_out.size()); ++i) {
next_states.push_back(std::move(encoder_out[i]));
}
return {std::move(encoder_out[0]), std::move(next_states)};
}
Ort::Value OnlineEbranchformerTransducerModel::RunDecoder(
Ort::Value decoder_input) {
auto decoder_out = decoder_sess_->Run(
{}, decoder_input_names_ptr_.data(), &decoder_input, 1,
decoder_output_names_ptr_.data(), decoder_output_names_ptr_.size());
return std::move(decoder_out[0]);
}
Ort::Value OnlineEbranchformerTransducerModel::RunJoiner(Ort::Value encoder_out,
Ort::Value decoder_out) {
std::array<Ort::Value, 2> joiner_input = {std::move(encoder_out),
std::move(decoder_out)};
auto logit =
joiner_sess_->Run({}, joiner_input_names_ptr_.data(), joiner_input.data(),
joiner_input.size(), joiner_output_names_ptr_.data(),
joiner_output_names_ptr_.size());
return std::move(logit[0]);
}
#if __ANDROID_API__ >= 9
template OnlineEbranchformerTransducerModel::OnlineEbranchformerTransducerModel(
AAssetManager *mgr, const OnlineModelConfig &config);
#endif
#if __OHOS__
template OnlineEbranchformerTransducerModel::OnlineEbranchformerTransducerModel(
NativeResourceManager *mgr, const OnlineModelConfig &config);
#endif
} // namespace sherpa_onnx