offline-tts-vits-model.cc
12.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
// sherpa-onnx/csrc/offline-tts-vits-model.cc
//
// Copyright (c) 2023 Xiaomi Corporation
#include "sherpa-onnx/csrc/offline-tts-vits-model.h"
#include <algorithm>
#include <string>
#include <utility>
#include <vector>
#if __ANDROID_API__ >= 9
#include "android/asset_manager.h"
#include "android/asset_manager_jni.h"
#endif
#if __OHOS__
#include "rawfile/raw_file_manager.h"
#endif
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
#include "sherpa-onnx/csrc/session.h"
namespace sherpa_onnx {
class OfflineTtsVitsModel::Impl {
public:
explicit Impl(const OfflineTtsModelConfig &config)
: config_(config),
env_(ORT_LOGGING_LEVEL_ERROR),
sess_opts_(GetSessionOptions(config)),
allocator_{} {
auto buf = ReadFile(config.vits.model);
Init(buf.data(), buf.size());
}
template <typename Manager>
Impl(Manager *mgr, const OfflineTtsModelConfig &config)
: config_(config),
env_(ORT_LOGGING_LEVEL_ERROR),
sess_opts_(GetSessionOptions(config)),
allocator_{} {
auto buf = ReadFile(mgr, config.vits.model);
Init(buf.data(), buf.size());
}
Ort::Value Run(Ort::Value x, int64_t sid, float speed) {
if (meta_data_.is_piper || meta_data_.is_coqui) {
return RunVitsPiperOrCoqui(std::move(x), sid, speed);
}
return RunVits(std::move(x), sid, speed);
}
Ort::Value Run(Ort::Value x, Ort::Value tones, int64_t sid, float speed) {
if (meta_data_.num_speakers == 1) {
// For MeloTTS, we hardcode sid to the one contained in the meta data
sid = meta_data_.speaker_id;
}
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::vector<int64_t> x_shape = x.GetTensorTypeAndShapeInfo().GetShape();
if (x_shape[0] != 1) {
SHERPA_ONNX_LOGE("Support only batch_size == 1. Given: %d",
static_cast<int32_t>(x_shape[0]));
exit(-1);
}
int64_t len = x_shape[1];
int64_t len_shape = 1;
Ort::Value x_length =
Ort::Value::CreateTensor(memory_info, &len, 1, &len_shape, 1);
int64_t scale_shape = 1;
float noise_scale = config_.vits.noise_scale;
float length_scale = config_.vits.length_scale;
float noise_scale_w = config_.vits.noise_scale_w;
if (speed != 1 && speed > 0) {
length_scale = 1. / speed;
}
Ort::Value noise_scale_tensor =
Ort::Value::CreateTensor(memory_info, &noise_scale, 1, &scale_shape, 1);
Ort::Value length_scale_tensor = Ort::Value::CreateTensor(
memory_info, &length_scale, 1, &scale_shape, 1);
Ort::Value noise_scale_w_tensor = Ort::Value::CreateTensor(
memory_info, &noise_scale_w, 1, &scale_shape, 1);
Ort::Value sid_tensor =
Ort::Value::CreateTensor(memory_info, &sid, 1, &scale_shape, 1);
std::vector<Ort::Value> inputs;
inputs.reserve(7);
inputs.push_back(std::move(x));
inputs.push_back(std::move(x_length));
inputs.push_back(std::move(tones));
inputs.push_back(std::move(sid_tensor));
inputs.push_back(std::move(noise_scale_tensor));
inputs.push_back(std::move(length_scale_tensor));
inputs.push_back(std::move(noise_scale_w_tensor));
auto out =
sess_->Run({}, input_names_ptr_.data(), inputs.data(), inputs.size(),
output_names_ptr_.data(), output_names_ptr_.size());
return std::move(out[0]);
}
const OfflineTtsVitsModelMetaData &GetMetaData() const { return meta_data_; }
private:
void Init(void *model_data, size_t model_data_length) {
sess_ = std::make_unique<Ort::Session>(env_, model_data, model_data_length,
sess_opts_);
GetInputNames(sess_.get(), &input_names_, &input_names_ptr_);
GetOutputNames(sess_.get(), &output_names_, &output_names_ptr_);
// get meta data
Ort::ModelMetadata meta_data = sess_->GetModelMetadata();
if (config_.debug) {
std::ostringstream os;
os << "---vits model---\n";
PrintModelMetadata(os, meta_data);
os << "----------input names----------\n";
int32_t i = 0;
for (const auto &s : input_names_) {
os << i << " " << s << "\n";
++i;
}
os << "----------output names----------\n";
i = 0;
for (const auto &s : output_names_) {
os << i << " " << s << "\n";
++i;
}
#if __OHOS__
SHERPA_ONNX_LOGE("%{public}s\n", os.str().c_str());
#else
SHERPA_ONNX_LOGE("%s\n", os.str().c_str());
#endif
}
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
SHERPA_ONNX_READ_META_DATA(meta_data_.sample_rate, "sample_rate");
SHERPA_ONNX_READ_META_DATA_WITH_DEFAULT(meta_data_.add_blank, "add_blank",
0);
SHERPA_ONNX_READ_META_DATA_WITH_DEFAULT(meta_data_.speaker_id, "speaker_id",
0);
SHERPA_ONNX_READ_META_DATA_WITH_DEFAULT(meta_data_.version, "version", 0);
SHERPA_ONNX_READ_META_DATA(meta_data_.num_speakers, "n_speakers");
SHERPA_ONNX_READ_META_DATA_STR_WITH_DEFAULT(meta_data_.punctuations,
"punctuation", "");
SHERPA_ONNX_READ_META_DATA_STR(meta_data_.language, "language");
SHERPA_ONNX_READ_META_DATA_STR_WITH_DEFAULT(meta_data_.voice, "voice", "");
SHERPA_ONNX_READ_META_DATA_STR_WITH_DEFAULT(meta_data_.frontend, "frontend",
"");
SHERPA_ONNX_READ_META_DATA_WITH_DEFAULT(meta_data_.jieba, "jieba", 0);
SHERPA_ONNX_READ_META_DATA_WITH_DEFAULT(meta_data_.blank_id, "blank_id", 0);
SHERPA_ONNX_READ_META_DATA_WITH_DEFAULT(meta_data_.bos_id, "bos_id", 0);
SHERPA_ONNX_READ_META_DATA_WITH_DEFAULT(meta_data_.eos_id, "eos_id", 0);
SHERPA_ONNX_READ_META_DATA_WITH_DEFAULT(meta_data_.use_eos_bos,
"use_eos_bos", 0);
SHERPA_ONNX_READ_META_DATA_WITH_DEFAULT(meta_data_.pad_id, "pad_id", 0);
std::string comment;
SHERPA_ONNX_READ_META_DATA_STR(comment, "comment");
if (comment.find("piper") != std::string::npos) {
meta_data_.is_piper = true;
}
if (comment.find("coqui") != std::string::npos) {
meta_data_.is_coqui = true;
}
if (comment.find("icefall") != std::string::npos) {
meta_data_.is_icefall = true;
}
if (comment.find("melo") != std::string::npos) {
meta_data_.is_melo_tts = true;
int32_t expected_version = 2;
if (meta_data_.version < expected_version) {
SHERPA_ONNX_LOGE(
"Please download the latest MeloTTS model and retry. Current "
"version: %d. Expected version: %d",
meta_data_.version, expected_version);
exit(-1);
}
// NOTE(fangjun):
// version 0 is the first version
// version 2: add jieba=1 to the metadata
}
}
Ort::Value RunVitsPiperOrCoqui(Ort::Value x, int64_t sid, float speed) {
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::vector<int64_t> x_shape = x.GetTensorTypeAndShapeInfo().GetShape();
if (x_shape[0] != 1) {
SHERPA_ONNX_LOGE("Support only batch_size == 1. Given: %d",
static_cast<int32_t>(x_shape[0]));
exit(-1);
}
int64_t len = x_shape[1];
int64_t len_shape = 1;
Ort::Value x_length =
Ort::Value::CreateTensor(memory_info, &len, 1, &len_shape, 1);
float noise_scale = config_.vits.noise_scale;
float length_scale = config_.vits.length_scale;
float noise_scale_w = config_.vits.noise_scale_w;
if (speed != 1 && speed > 0) {
length_scale = 1. / speed;
}
std::array<float, 3> scales = {noise_scale, length_scale, noise_scale_w};
int64_t scale_shape = 3;
Ort::Value scales_tensor = Ort::Value::CreateTensor(
memory_info, scales.data(), scales.size(), &scale_shape, 1);
int64_t sid_shape = 1;
Ort::Value sid_tensor =
Ort::Value::CreateTensor(memory_info, &sid, 1, &sid_shape, 1);
int64_t lang_id_shape = 1;
int64_t lang_id = 0;
Ort::Value lang_id_tensor =
Ort::Value::CreateTensor(memory_info, &lang_id, 1, &lang_id_shape, 1);
std::vector<Ort::Value> inputs;
inputs.reserve(5);
inputs.push_back(std::move(x));
inputs.push_back(std::move(x_length));
inputs.push_back(std::move(scales_tensor));
if (input_names_.size() >= 4 && input_names_[3] == "sid") {
inputs.push_back(std::move(sid_tensor));
}
if (input_names_.size() >= 5 && input_names_[4] == "langid") {
inputs.push_back(std::move(lang_id_tensor));
}
auto out =
sess_->Run({}, input_names_ptr_.data(), inputs.data(), inputs.size(),
output_names_ptr_.data(), output_names_ptr_.size());
return std::move(out[0]);
}
Ort::Value RunVits(Ort::Value x, int64_t sid, float speed) {
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::vector<int64_t> x_shape = x.GetTensorTypeAndShapeInfo().GetShape();
if (x_shape[0] != 1) {
SHERPA_ONNX_LOGE("Support only batch_size == 1. Given: %d",
static_cast<int32_t>(x_shape[0]));
exit(-1);
}
int64_t len = x_shape[1];
int64_t len_shape = 1;
Ort::Value x_length =
Ort::Value::CreateTensor(memory_info, &len, 1, &len_shape, 1);
int64_t scale_shape = 1;
float noise_scale = config_.vits.noise_scale;
float length_scale = config_.vits.length_scale;
float noise_scale_w = config_.vits.noise_scale_w;
if (speed != 1 && speed > 0) {
length_scale = 1. / speed;
}
Ort::Value noise_scale_tensor =
Ort::Value::CreateTensor(memory_info, &noise_scale, 1, &scale_shape, 1);
Ort::Value length_scale_tensor = Ort::Value::CreateTensor(
memory_info, &length_scale, 1, &scale_shape, 1);
Ort::Value noise_scale_w_tensor = Ort::Value::CreateTensor(
memory_info, &noise_scale_w, 1, &scale_shape, 1);
Ort::Value sid_tensor =
Ort::Value::CreateTensor(memory_info, &sid, 1, &scale_shape, 1);
std::vector<Ort::Value> inputs;
inputs.reserve(6);
inputs.push_back(std::move(x));
inputs.push_back(std::move(x_length));
inputs.push_back(std::move(noise_scale_tensor));
inputs.push_back(std::move(length_scale_tensor));
inputs.push_back(std::move(noise_scale_w_tensor));
if (input_names_.size() == 6 &&
(input_names_.back() == "sid" || input_names_.back() == "speaker")) {
inputs.push_back(std::move(sid_tensor));
}
auto out =
sess_->Run({}, input_names_ptr_.data(), inputs.data(), inputs.size(),
output_names_ptr_.data(), output_names_ptr_.size());
return std::move(out[0]);
}
private:
OfflineTtsModelConfig config_;
Ort::Env env_;
Ort::SessionOptions sess_opts_;
Ort::AllocatorWithDefaultOptions allocator_;
std::unique_ptr<Ort::Session> sess_;
std::vector<std::string> input_names_;
std::vector<const char *> input_names_ptr_;
std::vector<std::string> output_names_;
std::vector<const char *> output_names_ptr_;
OfflineTtsVitsModelMetaData meta_data_;
};
OfflineTtsVitsModel::OfflineTtsVitsModel(const OfflineTtsModelConfig &config)
: impl_(std::make_unique<Impl>(config)) {}
template <typename Manager>
OfflineTtsVitsModel::OfflineTtsVitsModel(Manager *mgr,
const OfflineTtsModelConfig &config)
: impl_(std::make_unique<Impl>(mgr, config)) {}
OfflineTtsVitsModel::~OfflineTtsVitsModel() = default;
Ort::Value OfflineTtsVitsModel::Run(Ort::Value x, int64_t sid /*=0*/,
float speed /*= 1.0*/) {
return impl_->Run(std::move(x), sid, speed);
}
Ort::Value OfflineTtsVitsModel::Run(Ort::Value x, Ort::Value tones,
int64_t sid /*= 0*/,
float speed /*= 1.0*/) {
return impl_->Run(std::move(x), std::move(tones), sid, speed);
}
const OfflineTtsVitsModelMetaData &OfflineTtsVitsModel::GetMetaData() const {
return impl_->GetMetaData();
}
#if __ANDROID_API__ >= 9
template OfflineTtsVitsModel::OfflineTtsVitsModel(
AAssetManager *mgr, const OfflineTtsModelConfig &config);
#endif
#if __OHOS__
template OfflineTtsVitsModel::OfflineTtsVitsModel(
NativeResourceManager *mgr, const OfflineTtsModelConfig &config);
#endif
} // namespace sherpa_onnx