offline-tts.py 13.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
#!/usr/bin/env python3
#
# Copyright (c)  2023  Xiaomi Corporation

"""
This file demonstrates how to use sherpa-onnx Python API to generate audio
from text, i.e., text-to-speech.


Different from ./offline-tts-play.py, this file does not play back the
generated audio.

Usage:

Example (1/7)

wget https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/vits-piper-en_US-amy-low.tar.bz2
tar xf vits-piper-en_US-amy-low.tar.bz2

python3 ./python-api-examples/offline-tts.py \
 --vits-model=./vits-piper-en_US-amy-low/en_US-amy-low.onnx \
 --vits-tokens=./vits-piper-en_US-amy-low/tokens.txt \
 --vits-data-dir=./vits-piper-en_US-amy-low/espeak-ng-data \
 --output-filename=./generated.wav \
 "Today as always, men fall into two groups: slaves and free men. Whoever does not have two-thirds of his day for himself, is a slave, whatever he may be: a statesman, a businessman, an official, or a scholar."

Example (2/7)

wget https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/vits-icefall-zh-aishell3.tar.bz2
tar xvf vits-icefall-zh-aishell3.tar.bz2

python3 ./python-api-examples/offline-tts.py \
 --vits-model=./vits-icefall-zh-aishell3/model.onnx \
 --vits-lexicon=./vits-icefall-zh-aishell3/lexicon.txt \
 --vits-tokens=./vits-icefall-zh-aishell3/tokens.txt \
 --tts-rule-fsts='./vits-icefall-zh-aishell3/phone.fst,./vits-icefall-zh-aishell3/date.fst,./vits-icefall-zh-aishell3/number.fst' \
 --sid=21 \
 --output-filename=./liubei-21.wav \
 "勿以恶小而为之,勿以善小而不为。惟贤惟德,能服于人。122334"

Example (3/7)

wget https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/sherpa-onnx-vits-zh-ll.tar.bz2
tar xvf sherpa-onnx-vits-zh-ll.tar.bz2
rm sherpa-onnx-vits-zh-ll.tar.bz2

python3 ./python-api-examples/offline-tts.py \
 --vits-model=./sherpa-onnx-vits-zh-ll/model.onnx \
 --vits-lexicon=./sherpa-onnx-vits-zh-ll/lexicon.txt \
 --vits-tokens=./sherpa-onnx-vits-zh-ll/tokens.txt \
 --tts-rule-fsts=./sherpa-onnx-vits-zh-ll/phone.fst,./sherpa-onnx-vits-zh-ll/date.fst,./sherpa-onnx-vits-zh-ll/number.fst \
 --vits-dict-dir=./sherpa-onnx-vits-zh-ll/dict \
 --sid=2 \
 --output-filename=./test-2.wav \
 "当夜幕降临,星光点点,伴随着微风拂面,我在静谧中感受着时光的流转,思念如涟漪荡漾,梦境如画卷展开,我与自然融为一体,沉静在这片宁静的美丽之中,感受着生命的奇迹与温柔。2024年5月11号,拨打110或者18920240511。123456块钱。"

Example (4/7)

curl -O -SL https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/matcha-icefall-zh-baker.tar.bz2
tar xvf matcha-icefall-zh-baker.tar.bz2
rm matcha-icefall-zh-baker.tar.bz2

curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/vocoder-models/hifigan_v2.onnx

python3 ./python-api-examples/offline-tts.py \
 --matcha-acoustic-model=./matcha-icefall-zh-baker/model-steps-3.onnx \
 --matcha-vocoder=./hifigan_v2.onnx \
 --matcha-lexicon=./matcha-icefall-zh-baker/lexicon.txt \
 --matcha-tokens=./matcha-icefall-zh-baker/tokens.txt \
 --tts-rule-fsts=./matcha-icefall-zh-baker/phone.fst,./matcha-icefall-zh-baker/date.fst,./matcha-icefall-zh-baker/number.fst \
 --matcha-dict-dir=./matcha-icefall-zh-baker/dict \
 --output-filename=./test-matcha.wav \
 "某某银行的副行长和一些行政领导表示,他们去过长江和长白山; 经济不断增长。2024年12月31号,拨打110或者18920240511。123456块钱。"

Example (5/7)

curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/matcha-icefall-en_US-ljspeech.tar.bz2
tar xvf matcha-icefall-en_US-ljspeech.tar.bz2
rm matcha-icefall-en_US-ljspeech.tar.bz2

curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/vocoder-models/hifigan_v2.onnx

python3 ./python-api-examples/offline-tts.py \
  --matcha-acoustic-model=./matcha-icefall-en_US-ljspeech/model-steps-3.onnx \
  --matcha-vocoder=./hifigan_v2.onnx \
  --matcha-tokens=./matcha-icefall-en_US-ljspeech/tokens.txt \
  --matcha-data-dir=./matcha-icefall-en_US-ljspeech/espeak-ng-data \
  --output-filename=./test-matcha-ljspeech-en.wav \
  --num-threads=2 \
 "Today as always, men fall into two groups: slaves and free men. Whoever does not have two-thirds of his day for himself, is a slave, whatever he may be: a statesman, a businessman, an official, or a scholar."

Example (6/7)

(This version of kokoro supports only English)

curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/kokoro-en-v0_19.tar.bz2
tar xf kokoro-en-v0_19.tar.bz2
rm kokoro-en-v0_19.tar.bz2

python3 ./python-api-examples/offline-tts.py \
  --debug=1 \
  --kokoro-model=./kokoro-en-v0_19/model.onnx \
  --kokoro-voices=./kokoro-en-v0_19/voices.bin \
  --kokoro-tokens=./kokoro-en-v0_19/tokens.txt \
  --kokoro-data-dir=./kokoro-en-v0_19/espeak-ng-data \
  --num-threads=2 \
  --sid=10 \
  --output-filename="./kokoro-10.wav" \
  "Today as always, men fall into two groups: slaves and free men. Whoever does not have two-thirds of his day for himself, is a slave, whatever he may be  a statesman, a businessman, an official, or a scholar."

Example (7/7)

(This version of kokoro supports English, Chinese, etc.)

curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/kokoro-multi-lang-v1_0.tar.bz2
tar xf kokoro-multi-lang-v1_0.tar.bz2
rm kokoro-multi-lang-v1_0.tar.bz2

python3 ./python-api-examples/offline-tts.py \
  --debug=1 \
  --kokoro-model=./kokoro-multi-lang-v1_0/model.onnx \
  --kokoro-voices=./kokoro-multi-lang-v1_0/voices.bin \
  --kokoro-tokens=./kokoro-multi-lang-v1_0/tokens.txt \
  --kokoro-data-dir=./kokoro-multi-lang-v1_0/espeak-ng-data \
  --kokoro-dict-dir=./kokoro-multi-lang-v1_0/dict \
  --kokoro-lexicon=./kokoro-multi-lang-v1_0/lexicon-us-en.txt,./kokoro-multi-lang-v1_0/lexicon-zh.txt \
  --num-threads=2 \
  --sid=18 \
  --output-filename="./kokoro-18-zh-en.wav" \
  "中英文语音合成测试。This is generated by next generation Kaldi using Kokoro without Misaki. 你觉得中英文说的如何呢?"

You can find more models at
https://github.com/k2-fsa/sherpa-onnx/releases/tag/tts-models

Please see
https://k2-fsa.github.io/sherpa/onnx/tts/index.html
for details.

"""

import argparse
import time

import sherpa_onnx
import soundfile as sf


def add_vits_args(parser):
    parser.add_argument(
        "--vits-model",
        type=str,
        default="",
        help="Path to vits model.onnx",
    )

    parser.add_argument(
        "--vits-lexicon",
        type=str,
        default="",
        help="Path to lexicon.txt",
    )

    parser.add_argument(
        "--vits-tokens",
        type=str,
        default="",
        help="Path to tokens.txt",
    )

    parser.add_argument(
        "--vits-data-dir",
        type=str,
        default="",
        help="""Path to the dict directory of espeak-ng. If it is specified,
        --vits-lexicon and --vits-tokens are ignored""",
    )

    parser.add_argument(
        "--vits-dict-dir",
        type=str,
        default="",
        help="Path to the dict directory for models using jieba",
    )


def add_matcha_args(parser):
    parser.add_argument(
        "--matcha-acoustic-model",
        type=str,
        default="",
        help="Path to model.onnx for matcha",
    )

    parser.add_argument(
        "--matcha-vocoder",
        type=str,
        default="",
        help="Path to vocoder for matcha",
    )

    parser.add_argument(
        "--matcha-lexicon",
        type=str,
        default="",
        help="Path to lexicon.txt for matcha",
    )

    parser.add_argument(
        "--matcha-tokens",
        type=str,
        default="",
        help="Path to tokens.txt for matcha",
    )

    parser.add_argument(
        "--matcha-data-dir",
        type=str,
        default="",
        help="""Path to the dict directory of espeak-ng. If it is specified,
        --matcha-lexicon and --matcha-tokens are ignored""",
    )

    parser.add_argument(
        "--matcha-dict-dir",
        type=str,
        default="",
        help="Path to the dict directory for models using jieba",
    )


def add_kokoro_args(parser):
    parser.add_argument(
        "--kokoro-model",
        type=str,
        default="",
        help="Path to model.onnx for kokoro",
    )

    parser.add_argument(
        "--kokoro-voices",
        type=str,
        default="",
        help="Path to voices.bin for kokoro",
    )

    parser.add_argument(
        "--kokoro-tokens",
        type=str,
        default="",
        help="Path to tokens.txt for kokoro",
    )

    parser.add_argument(
        "--kokoro-data-dir",
        type=str,
        default="",
        help="Path to the dict directory of espeak-ng.",
    )

    parser.add_argument(
        "--kokoro-dict-dir",
        type=str,
        default="",
        help="Path to the dict directory for models using jieba. Needed only by multilingual kokoro",
    )

    parser.add_argument(
        "--kokoro-lexicon",
        type=str,
        default="",
        help="Path to lexicon.txt for kokoro. Needed only by multilingual kokoro",
    )


def get_args():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )

    add_vits_args(parser)
    add_matcha_args(parser)
    add_kokoro_args(parser)

    parser.add_argument(
        "--tts-rule-fsts",
        type=str,
        default="",
        help="Path to rule.fst",
    )

    parser.add_argument(
        "--max-num-sentences",
        type=int,
        default=1,
        help="""Max number of sentences in a batch to avoid OOM if the input
        text is very long. Set it to -1 to process all the sentences in a
        single batch. A smaller value does not mean it is slower compared
        to a larger one on CPU.
        """,
    )

    parser.add_argument(
        "--output-filename",
        type=str,
        default="./generated.wav",
        help="Path to save generated wave",
    )

    parser.add_argument(
        "--sid",
        type=int,
        default=0,
        help="""Speaker ID. Used only for multi-speaker models, e.g.
        models trained using the VCTK dataset. Not used for single-speaker
        models, e.g., models trained using the LJ speech dataset.
        """,
    )

    parser.add_argument(
        "--debug",
        type=bool,
        default=False,
        help="True to show debug messages",
    )

    parser.add_argument(
        "--provider",
        type=str,
        default="cpu",
        help="valid values: cpu, cuda, coreml",
    )

    parser.add_argument(
        "--num-threads",
        type=int,
        default=1,
        help="Number of threads for neural network computation",
    )

    parser.add_argument(
        "--speed",
        type=float,
        default=1.0,
        help="Speech speed. Larger->faster; smaller->slower",
    )

    parser.add_argument(
        "text",
        type=str,
        help="The input text to generate audio for",
    )

    return parser.parse_args()


def main():
    args = get_args()
    print(args)

    tts_config = sherpa_onnx.OfflineTtsConfig(
        model=sherpa_onnx.OfflineTtsModelConfig(
            vits=sherpa_onnx.OfflineTtsVitsModelConfig(
                model=args.vits_model,
                lexicon=args.vits_lexicon,
                data_dir=args.vits_data_dir,
                dict_dir=args.vits_dict_dir,
                tokens=args.vits_tokens,
            ),
            matcha=sherpa_onnx.OfflineTtsMatchaModelConfig(
                acoustic_model=args.matcha_acoustic_model,
                vocoder=args.matcha_vocoder,
                lexicon=args.matcha_lexicon,
                tokens=args.matcha_tokens,
                data_dir=args.matcha_data_dir,
                dict_dir=args.matcha_dict_dir,
            ),
            kokoro=sherpa_onnx.OfflineTtsKokoroModelConfig(
                model=args.kokoro_model,
                voices=args.kokoro_voices,
                tokens=args.kokoro_tokens,
                data_dir=args.kokoro_data_dir,
                dict_dir=args.kokoro_dict_dir,
                lexicon=args.kokoro_lexicon,
            ),
            provider=args.provider,
            debug=args.debug,
            num_threads=args.num_threads,
        ),
        rule_fsts=args.tts_rule_fsts,
        max_num_sentences=args.max_num_sentences,
    )
    if not tts_config.validate():
        raise ValueError("Please check your config")

    tts = sherpa_onnx.OfflineTts(tts_config)

    start = time.time()
    audio = tts.generate(args.text, sid=args.sid, speed=args.speed)
    end = time.time()

    if len(audio.samples) == 0:
        print("Error in generating audios. Please read previous error messages.")
        return

    elapsed_seconds = end - start
    audio_duration = len(audio.samples) / audio.sample_rate
    real_time_factor = elapsed_seconds / audio_duration

    sf.write(
        args.output_filename,
        audio.samples,
        samplerate=audio.sample_rate,
        subtype="PCM_16",
    )
    print(f"Saved to {args.output_filename}")
    print(f"The text is '{args.text}'")
    print(f"Elapsed seconds: {elapsed_seconds:.3f}")
    print(f"Audio duration in seconds: {audio_duration:.3f}")
    print(f"RTF: {elapsed_seconds:.3f}/{audio_duration:.3f} = {real_time_factor:.3f}")


if __name__ == "__main__":
    main()