speech-recognition-from-microphone.py
3.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#!/usr/bin/env python3
# Real-time speech recognition from a microphone with sherpa-onnx Python API
#
# Please refer to
# https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
# to download pre-trained models
import argparse
import sys
from pathlib import Path
try:
import sounddevice as sd
except ImportError:
print("Please install sounddevice first. You can use")
print()
print(" pip install sounddevice")
print()
print("to install it")
sys.exit(-1)
import sherpa_onnx
def assert_file_exists(filename: str):
assert Path(filename).is_file(), (
f"{filename} does not exist!\n"
"Please refer to "
"https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html to download it"
)
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--tokens",
type=str,
help="Path to tokens.txt",
)
parser.add_argument(
"--encoder",
type=str,
help="Path to the encoder model",
)
parser.add_argument(
"--decoder",
type=str,
help="Path to the decoder model",
)
parser.add_argument(
"--joiner",
type=str,
help="Path to the joiner model",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="Valid values are greedy_search and modified_beam_search",
)
return parser.parse_args()
def create_recognizer():
args = get_args()
assert_file_exists(args.encoder)
assert_file_exists(args.decoder)
assert_file_exists(args.joiner)
assert_file_exists(args.tokens)
# Please replace the model files if needed.
# See https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
# for download links.
recognizer = sherpa_onnx.OnlineRecognizer(
tokens=args.tokens,
encoder=args.encoder,
decoder=args.decoder,
joiner=args.joiner,
num_threads=1,
sample_rate=16000,
feature_dim=80,
decoding_method=args.decoding_method,
)
return recognizer
def main():
recognizer = create_recognizer()
print("Started! Please speak")
# The model is using 16 kHz, we use 48 kHz here to demonstrate that
# sherpa-onnx will do resampling inside.
sample_rate = 48000
samples_per_read = int(0.1 * sample_rate) # 0.1 second = 100 ms
last_result = ""
stream = recognizer.create_stream()
display = sherpa_onnx.Display(max_word_per_line=40)
with sd.InputStream(channels=1, dtype="float32", samplerate=sample_rate) as s:
while True:
samples, _ = s.read(samples_per_read) # a blocking read
samples = samples.reshape(-1)
stream.accept_waveform(sample_rate, samples)
while recognizer.is_ready(stream):
recognizer.decode_stream(stream)
result = recognizer.get_result(stream)
if last_result != result:
last_result = result
display.print(-1, result)
if __name__ == "__main__":
devices = sd.query_devices()
print(devices)
default_input_device_idx = sd.default.device[0]
print(f'Use default device: {devices[default_input_device_idx]["name"]}')
try:
main()
except KeyboardInterrupt:
print("\nCaught Ctrl + C. Exiting")