Main.kt
2.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
package com.k2fsa.sherpa.onnx
import android.content.res.AssetManager
fun main() {
testTts()
testAsr()
}
fun testTts() {
// see https://github.com/k2-fsa/sherpa-onnx/releases/tag/tts-models
// https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/vits-piper-en_US-amy-low.tar.bz2
var config = OfflineTtsConfig(
model=OfflineTtsModelConfig(
vits=OfflineTtsVitsModelConfig(
model="./vits-piper-en_US-amy-low/en_US-amy-low.onnx",
tokens="./vits-piper-en_US-amy-low/tokens.txt",
dataDir="./vits-piper-en_US-amy-low/espeak-ng-data",
),
numThreads=1,
debug=true,
)
)
val tts = OfflineTts(config=config)
val audio = tts.generate(text="“Today as always, men fall into two groups: slaves and free men. Whoever does not have two-thirds of his day for himself, is a slave, whatever he may be: a statesman, a businessman, an official, or a scholar.”")
audio.save(filename="test-en.wav")
}
fun testAsr() {
var featConfig = FeatureConfig(
sampleRate = 16000,
featureDim = 80,
)
// please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
// to dowload pre-trained models
var modelConfig = OnlineModelConfig(
transducer = OnlineTransducerModelConfig(
encoder = "./sherpa-onnx-streaming-zipformer-en-2023-02-21/encoder-epoch-99-avg-1.onnx",
decoder = "./sherpa-onnx-streaming-zipformer-en-2023-02-21/decoder-epoch-99-avg-1.onnx",
joiner = "./sherpa-onnx-streaming-zipformer-en-2023-02-21/joiner-epoch-99-avg-1.onnx",
),
tokens = "./sherpa-onnx-streaming-zipformer-en-2023-02-21/tokens.txt",
numThreads = 1,
debug = false,
)
var endpointConfig = EndpointConfig()
var lmConfig = OnlineLMConfig()
var config = OnlineRecognizerConfig(
modelConfig = modelConfig,
lmConfig = lmConfig,
featConfig = featConfig,
endpointConfig = endpointConfig,
enableEndpoint = true,
decodingMethod = "greedy_search",
maxActivePaths = 4,
)
var model = SherpaOnnx(
config = config,
)
var objArray = WaveReader.readWaveFromFile(
filename = "./sherpa-onnx-streaming-zipformer-en-2023-02-21/test_wavs/0.wav",
)
var samples: FloatArray = objArray[0] as FloatArray
var sampleRate: Int = objArray[1] as Int
model.acceptWaveform(samples, sampleRate = sampleRate)
while (model.isReady()) {
model.decode()
}
var tailPaddings = FloatArray((sampleRate * 0.5).toInt()) // 0.5 seconds
model.acceptWaveform(tailPaddings, sampleRate = sampleRate)
model.inputFinished()
while (model.isReady()) {
model.decode()
}
println("results: ${model.text}")
}