sherpa_onnx.go 20.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
/*
Speech recognition with [Next-gen Kaldi].

[sherpa-onnx] is an open-source speech recognition framework for [Next-gen Kaldi].
It depends only on [onnxruntime], supporting both streaming and non-streaming
speech recognition.

It does not need to access the network during recognition and everything
runs locally.

It supports a variety of platforms, such as Linux (x86_64, aarch64, arm),
Windows (x86_64, x86), macOS (x86_64, arm64), etc.

Usage examples:

 1. Real-time speech recognition from a microphone

    Please see
    https://github.com/k2-fsa/sherpa-onnx/tree/master/go-api-examples/real-time-speech-recognition-from-microphone

 2. Decode files using a non-streaming model

    Please see
    https://github.com/k2-fsa/sherpa-onnx/tree/master/go-api-examples/non-streaming-decode-files

 3. Decode files using a streaming model

    Please see
    https://github.com/k2-fsa/sherpa-onnx/tree/master/go-api-examples/streaming-decode-files

 4. Convert text to speech using a non-streaming model

    Please see
    https://github.com/k2-fsa/sherpa-onnx/tree/master/go-api-examples/non-streaming-tts

[sherpa-onnx]: https://github.com/k2-fsa/sherpa-onnx
[onnxruntime]: https://github.com/microsoft/onnxruntime
[Next-gen Kaldi]: https://github.com/k2-fsa/
*/
package sherpa_onnx

// #include <stdlib.h>
// #include "c-api.h"
import "C"
import "unsafe"

// Configuration for online/streaming transducer models
//
// Please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/online-transducer/index.html
// to download pre-trained models
type OnlineTransducerModelConfig struct {
	Encoder string // Path to the encoder model, e.g., encoder.onnx or encoder.int8.onnx
	Decoder string // Path to the decoder model.
	Joiner  string // Path to the joiner model.
}

// Configuration for online/streaming paraformer models
//
// Please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/online-paraformer/index.html
// to download pre-trained models
type OnlineParaformerModelConfig struct {
	Encoder string // Path to the encoder model, e.g., encoder.onnx or encoder.int8.onnx
	Decoder string // Path to the decoder model.
}

// Please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/online-ctc/index.html
// to download pre-trained models
type OnlineZipformer2CtcModelConfig struct {
	Model string // Path to the onnx model
}

// Configuration for online/streaming models
//
// Please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/online-transducer/index.html
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/online-paraformer/index.html
// to download pre-trained models
type OnlineModelConfig struct {
	Transducer    OnlineTransducerModelConfig
	Paraformer    OnlineParaformerModelConfig
	Zipformer2Ctc OnlineZipformer2CtcModelConfig
	Tokens        string // Path to tokens.txt
	NumThreads    int    // Number of threads to use for neural network computation
	Provider      string // Optional. Valid values are: cpu, cuda, coreml
	Debug         int    // 1 to show model meta information while loading it.
	ModelType     string // Optional. You can specify it for faster model initialization
}

// Configuration for the feature extractor
type FeatureConfig struct {
	// Sample rate expected by the model. It is 16000 for all
	// pre-trained models provided by us
	SampleRate int
	// Feature dimension expected by the model. It is 80 for all
	// pre-trained models provided by us
	FeatureDim int
}

// Configuration for the online/streaming recognizer.
type OnlineRecognizerConfig struct {
	FeatConfig  FeatureConfig
	ModelConfig OnlineModelConfig

	// Valid decoding methods: greedy_search, modified_beam_search
	DecodingMethod string

	// Used only when DecodingMethod is modified_beam_search. It specifies
	// the maximum number of paths to keep during the search
	MaxActivePaths int

	EnableEndpoint int // 1 to enable endpoint detection.

	// Please see
	// https://k2-fsa.github.io/sherpa/ncnn/endpoint.html
	// for the meaning of Rule1MinTrailingSilence, Rule2MinTrailingSilence
	// and Rule3MinUtteranceLength.
	Rule1MinTrailingSilence float32
	Rule2MinTrailingSilence float32
	Rule3MinUtteranceLength float32
}

// It contains the recognition result for a online stream.
type OnlineRecognizerResult struct {
	Text string
}

// The online recognizer class. It wraps a pointer from C.
type OnlineRecognizer struct {
	impl *C.struct_SherpaOnnxOnlineRecognizer
}

// The online stream class. It wraps a pointer from C.
type OnlineStream struct {
	impl *C.struct_SherpaOnnxOnlineStream
}

// Free the internal pointer inside the recognizer to avoid memory leak.
func DeleteOnlineRecognizer(recognizer *OnlineRecognizer) {
	C.DestroyOnlineRecognizer(recognizer.impl)
	recognizer.impl = nil
}

// The user is responsible to invoke [DeleteOnlineRecognizer]() to free
// the returned recognizer to avoid memory leak
func NewOnlineRecognizer(config *OnlineRecognizerConfig) *OnlineRecognizer {
	c := C.struct_SherpaOnnxOnlineRecognizerConfig{}
	c.feat_config.sample_rate = C.int(config.FeatConfig.SampleRate)
	c.feat_config.feature_dim = C.int(config.FeatConfig.FeatureDim)

	c.model_config.transducer.encoder = C.CString(config.ModelConfig.Transducer.Encoder)
	defer C.free(unsafe.Pointer(c.model_config.transducer.encoder))

	c.model_config.transducer.decoder = C.CString(config.ModelConfig.Transducer.Decoder)
	defer C.free(unsafe.Pointer(c.model_config.transducer.decoder))

	c.model_config.transducer.joiner = C.CString(config.ModelConfig.Transducer.Joiner)
	defer C.free(unsafe.Pointer(c.model_config.transducer.joiner))

	c.model_config.paraformer.encoder = C.CString(config.ModelConfig.Paraformer.Encoder)
	defer C.free(unsafe.Pointer(c.model_config.paraformer.encoder))

	c.model_config.paraformer.decoder = C.CString(config.ModelConfig.Paraformer.Decoder)
	defer C.free(unsafe.Pointer(c.model_config.paraformer.decoder))

	c.model_config.zipformer2_ctc.model = C.CString(config.ModelConfig.Zipformer2Ctc.Model)
	defer C.free(unsafe.Pointer(c.model_config.zipformer2_ctc.model))

	c.model_config.tokens = C.CString(config.ModelConfig.Tokens)
	defer C.free(unsafe.Pointer(c.model_config.tokens))

	c.model_config.num_threads = C.int(config.ModelConfig.NumThreads)

	c.model_config.provider = C.CString(config.ModelConfig.Provider)
	defer C.free(unsafe.Pointer(c.model_config.provider))

	c.model_config.debug = C.int(config.ModelConfig.Debug)

	c.model_config.model_type = C.CString(config.ModelConfig.ModelType)
	defer C.free(unsafe.Pointer(c.model_config.model_type))

	c.decoding_method = C.CString(config.DecodingMethod)
	defer C.free(unsafe.Pointer(c.decoding_method))

	c.max_active_paths = C.int(config.MaxActivePaths)
	c.enable_endpoint = C.int(config.EnableEndpoint)
	c.rule1_min_trailing_silence = C.float(config.Rule1MinTrailingSilence)
	c.rule2_min_trailing_silence = C.float(config.Rule2MinTrailingSilence)
	c.rule3_min_utterance_length = C.float(config.Rule3MinUtteranceLength)

	recognizer := &OnlineRecognizer{}
	recognizer.impl = C.CreateOnlineRecognizer(&c)

	return recognizer
}

// Delete the internal pointer inside the stream to avoid memory leak.
func DeleteOnlineStream(stream *OnlineStream) {
	C.DestroyOnlineStream(stream.impl)
	stream.impl = nil
}

// The user is responsible to invoke [DeleteOnlineStream]() to free
// the returned stream to avoid memory leak
func NewOnlineStream(recognizer *OnlineRecognizer) *OnlineStream {
	stream := &OnlineStream{}
	stream.impl = C.CreateOnlineStream(recognizer.impl)
	return stream
}

// Input audio samples for the stream.
//
// sampleRate is the actual sample rate of the input audio samples. If it
// is different from the sample rate expected by the feature extractor, we will
// do resampling inside.
//
// samples contains audio samples. Each sample is in the range [-1, 1]
func (s *OnlineStream) AcceptWaveform(sampleRate int, samples []float32) {
	C.AcceptWaveform(s.impl, C.int(sampleRate), (*C.float)(&samples[0]), C.int(len(samples)))
}

// Signal that there will be no incoming audio samples.
// After calling this function, you cannot call [OnlineStream.AcceptWaveform] any longer.
//
// The main purpose of this function is to flush the remaining audio samples
// buffered inside for feature extraction.
func (s *OnlineStream) InputFinished() {
	C.InputFinished(s.impl)
}

// Check whether the stream has enough feature frames for decoding.
// Return true if this stream is ready for decoding. Return false otherwise.
//
// You will usually use it like below:
//
//	for recognizer.IsReady(s) {
//	   recognizer.Decode(s)
//	}
func (recognizer *OnlineRecognizer) IsReady(s *OnlineStream) bool {
	return C.IsOnlineStreamReady(recognizer.impl, s.impl) == 1
}

// Return true if an endpoint is detected.
//
// You usually use it like below:
//
//	if recognizer.IsEndpoint(s) {
//	   // do your own stuff after detecting an endpoint
//
//	   recognizer.Reset(s)
//	}
func (recognizer *OnlineRecognizer) IsEndpoint(s *OnlineStream) bool {
	return C.IsEndpoint(recognizer.impl, s.impl) == 1
}

// After calling this function, the internal neural network model states
// are reset and IsEndpoint(s) would return false. GetResult(s) would also
// return an empty string.
func (recognizer *OnlineRecognizer) Reset(s *OnlineStream) {
	C.Reset(recognizer.impl, s.impl)
}

// Decode the stream. Before calling this function, you have to ensure
// that recognizer.IsReady(s) returns true. Otherwise, you will be SAD.
//
// You usually use it like below:
//
//	for recognizer.IsReady(s) {
//	  recognizer.Decode(s)
//	}
func (recognizer *OnlineRecognizer) Decode(s *OnlineStream) {
	C.DecodeOnlineStream(recognizer.impl, s.impl)
}

// Decode multiple streams in parallel, i.e., in batch.
// You have to ensure that each stream is ready for decoding. Otherwise,
// you will be SAD.
func (recognizer *OnlineRecognizer) DecodeStreams(s []*OnlineStream) {
	ss := make([]*C.struct_SherpaOnnxOnlineStream, len(s))
	for i, v := range s {
		ss[i] = v.impl
	}

	C.DecodeMultipleOnlineStreams(recognizer.impl, &ss[0], C.int(len(s)))
}

// Get the current result of stream since the last invoke of Reset()
func (recognizer *OnlineRecognizer) GetResult(s *OnlineStream) *OnlineRecognizerResult {
	p := C.GetOnlineStreamResult(recognizer.impl, s.impl)
	defer C.DestroyOnlineRecognizerResult(p)
	result := &OnlineRecognizerResult{}
	result.Text = C.GoString(p.text)

	return result
}

// Configuration for offline/non-streaming transducer.
//
// Please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-transducer/index.html
// to download pre-trained models
type OfflineTransducerModelConfig struct {
	Encoder string // Path to the encoder model, i.e., encoder.onnx or encoder.int8.onnx
	Decoder string // Path to the decoder model
	Joiner  string // Path to the joiner model
}

// Configuration for offline/non-streaming paraformer.
//
// please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-paraformer/index.html
// to download pre-trained models
type OfflineParaformerModelConfig struct {
	Model string // Path to the model, e.g., model.onnx or model.int8.onnx
}

// Configuration for offline/non-streaming NeMo CTC models.
//
// Please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-ctc/index.html
// to download pre-trained models
type OfflineNemoEncDecCtcModelConfig struct {
	Model string // Path to the model, e.g., model.onnx or model.int8.onnx
}

type OfflineWhisperModelConfig struct {
	Encoder string
	Decoder string
}

type OfflineTdnnModelConfig struct {
	Model string
}

// Configuration for offline LM.
type OfflineLMConfig struct {
	Model string  // Path to the model
	Scale float32 // scale for LM score
}

type OfflineModelConfig struct {
	Transducer OfflineTransducerModelConfig
	Paraformer OfflineParaformerModelConfig
	NemoCTC    OfflineNemoEncDecCtcModelConfig
	Whisper    OfflineWhisperModelConfig
	Tdnn       OfflineTdnnModelConfig
	Tokens     string // Path to tokens.txt

	// Number of threads to use for neural network computation
	NumThreads int

	// 1 to print model meta information while loading
	Debug int

	// Optional. Valid values: cpu, cuda, coreml
	Provider string

	// Optional. Specify it for faster model initialization.
	ModelType string
}

// Configuration for the offline/non-streaming recognizer.
type OfflineRecognizerConfig struct {
	FeatConfig  FeatureConfig
	ModelConfig OfflineModelConfig
	LmConfig    OfflineLMConfig

	// Valid decoding method: greedy_search, modified_beam_search
	DecodingMethod string

	// Used only when DecodingMethod is modified_beam_search.
	MaxActivePaths int
}

// It wraps a pointer from C
type OfflineRecognizer struct {
	impl *C.struct_SherpaOnnxOfflineRecognizer
}

// It wraps a pointer from C
type OfflineStream struct {
	impl *C.struct_SherpaOnnxOfflineStream
}

// It contains recognition result of an offline stream.
type OfflineRecognizerResult struct {
	Text string
}

// Frees the internal pointer of the recognition to avoid memory leak.
func DeleteOfflineRecognizer(recognizer *OfflineRecognizer) {
	C.DestroyOfflineRecognizer(recognizer.impl)
	recognizer.impl = nil
}

// The user is responsible to invoke [DeleteOfflineRecognizer]() to free
// the returned recognizer to avoid memory leak
func NewOfflineRecognizer(config *OfflineRecognizerConfig) *OfflineRecognizer {
	c := C.struct_SherpaOnnxOfflineRecognizerConfig{}
	c.feat_config.sample_rate = C.int(config.FeatConfig.SampleRate)
	c.feat_config.feature_dim = C.int(config.FeatConfig.FeatureDim)

	c.model_config.transducer.encoder = C.CString(config.ModelConfig.Transducer.Encoder)
	defer C.free(unsafe.Pointer(c.model_config.transducer.encoder))

	c.model_config.transducer.decoder = C.CString(config.ModelConfig.Transducer.Decoder)
	defer C.free(unsafe.Pointer(c.model_config.transducer.decoder))

	c.model_config.transducer.joiner = C.CString(config.ModelConfig.Transducer.Joiner)
	defer C.free(unsafe.Pointer(c.model_config.transducer.joiner))

	c.model_config.paraformer.model = C.CString(config.ModelConfig.Paraformer.Model)
	defer C.free(unsafe.Pointer(c.model_config.paraformer.model))

	c.model_config.nemo_ctc.model = C.CString(config.ModelConfig.NemoCTC.Model)
	defer C.free(unsafe.Pointer(c.model_config.nemo_ctc.model))

	c.model_config.whisper.encoder = C.CString(config.ModelConfig.Whisper.Encoder)
	defer C.free(unsafe.Pointer(c.model_config.whisper.encoder))

	c.model_config.whisper.decoder = C.CString(config.ModelConfig.Whisper.Decoder)
	defer C.free(unsafe.Pointer(c.model_config.whisper.decoder))

	c.model_config.tdnn.model = C.CString(config.ModelConfig.Tdnn.Model)
	defer C.free(unsafe.Pointer(c.model_config.tdnn.model))

	c.model_config.tokens = C.CString(config.ModelConfig.Tokens)
	defer C.free(unsafe.Pointer(c.model_config.tokens))

	c.model_config.num_threads = C.int(config.ModelConfig.NumThreads)

	c.model_config.debug = C.int(config.ModelConfig.Debug)

	c.model_config.provider = C.CString(config.ModelConfig.Provider)
	defer C.free(unsafe.Pointer(c.model_config.provider))

	c.model_config.model_type = C.CString(config.ModelConfig.ModelType)
	defer C.free(unsafe.Pointer(c.model_config.model_type))

	c.lm_config.model = C.CString(config.LmConfig.Model)
	defer C.free(unsafe.Pointer(c.lm_config.model))

	c.lm_config.scale = C.float(config.LmConfig.Scale)

	c.decoding_method = C.CString(config.DecodingMethod)
	defer C.free(unsafe.Pointer(c.decoding_method))

	c.max_active_paths = C.int(config.MaxActivePaths)

	recognizer := &OfflineRecognizer{}
	recognizer.impl = C.CreateOfflineRecognizer(&c)

	return recognizer
}

// Frees the internal pointer of the stream to avoid memory leak.
func DeleteOfflineStream(stream *OfflineStream) {
	C.DestroyOfflineStream(stream.impl)
	stream.impl = nil
}

// The user is responsible to invoke [DeleteOfflineStream]() to free
// the returned stream to avoid memory leak
func NewOfflineStream(recognizer *OfflineRecognizer) *OfflineStream {
	stream := &OfflineStream{}
	stream.impl = C.CreateOfflineStream(recognizer.impl)
	return stream
}

// Input audio samples for the offline stream.
// Please only call it once. That is, input all samples at once.
//
// sampleRate is the sample rate of the input audio samples. If it is different
// from the value expected by the feature extractor, we will do resampling inside.
//
// samples contains the actual audio samples. Each sample is in the range [-1, 1].
func (s *OfflineStream) AcceptWaveform(sampleRate int, samples []float32) {
	C.AcceptWaveformOffline(s.impl, C.int(sampleRate), (*C.float)(&samples[0]), C.int(len(samples)))
}

// Decode the offline stream.
func (recognizer *OfflineRecognizer) Decode(s *OfflineStream) {
	C.DecodeOfflineStream(recognizer.impl, s.impl)
}

// Decode multiple streams in parallel, i.e., in batch.
func (recognizer *OfflineRecognizer) DecodeStreams(s []*OfflineStream) {
	ss := make([]*C.struct_SherpaOnnxOfflineStream, len(s))
	for i, v := range s {
		ss[i] = v.impl
	}

	C.DecodeMultipleOfflineStreams(recognizer.impl, &ss[0], C.int(len(s)))
}

// Get the recognition result of the offline stream.
func (s *OfflineStream) GetResult() *OfflineRecognizerResult {
	p := C.GetOfflineStreamResult(s.impl)
	defer C.DestroyOfflineRecognizerResult(p)
	result := &OfflineRecognizerResult{}
	result.Text = C.GoString(p.text)

	return result
}

// Configuration for offline/non-streaming text-to-speech (TTS).
//
// Please refer to
// https://k2-fsa.github.io/sherpa/onnx/tts/pretrained_models/index.html
// to download pre-trained models
type OfflineTtsVitsModelConfig struct {
	Model       string  // Path to the VITS onnx model
	Lexicon     string  // Path to lexicon.txt
	Tokens      string  // Path to tokens.txt
	DataDir     string  // Path to tokens.txt
	NoiseScale  float32 // noise scale for vits models. Please use 0.667 in general
	NoiseScaleW float32 // noise scale for vits models. Please use 0.8 in general
	LengthScale float32 // Please use 1.0 in general. Smaller -> Faster speech speed. Larger -> Slower speech speed
}

type OfflineTtsModelConfig struct {
	Vits OfflineTtsVitsModelConfig

	// Number of threads to use for neural network computation
	NumThreads int

	// 1 to print model meta information while loading
	Debug int

	// Optional. Valid values: cpu, cuda, coreml
	Provider string
}

type OfflineTtsConfig struct {
	Model           OfflineTtsModelConfig
	RuleFsts        string
	MaxNumSentences int
}

type GeneratedAudio struct {
	// Normalized samples in the range [-1, 1]
	Samples []float32

	SampleRate int
}

// The offline tts class. It wraps a pointer from C.
type OfflineTts struct {
	impl *C.struct_SherpaOnnxOfflineTts
}

// Free the internal pointer inside the tts to avoid memory leak.
func DeleteOfflineTts(tts *OfflineTts) {
	C.SherpaOnnxDestroyOfflineTts(tts.impl)
	tts.impl = nil
}

// The user is responsible to invoke [DeleteOfflineTts]() to free
// the returned tts to avoid memory leak
func NewOfflineTts(config *OfflineTtsConfig) *OfflineTts {
	c := C.struct_SherpaOnnxOfflineTtsConfig{}

	c.rule_fsts = C.CString(config.RuleFsts)
	defer C.free(unsafe.Pointer(c.rule_fsts))

	c.max_num_sentences = C.int(config.MaxNumSentences)

	c.model.vits.model = C.CString(config.Model.Vits.Model)
	defer C.free(unsafe.Pointer(c.model.vits.model))

	c.model.vits.lexicon = C.CString(config.Model.Vits.Lexicon)
	defer C.free(unsafe.Pointer(c.model.vits.lexicon))

	c.model.vits.tokens = C.CString(config.Model.Vits.Tokens)
	defer C.free(unsafe.Pointer(c.model.vits.tokens))

	c.model.vits.data_dir = C.CString(config.Model.Vits.DataDir)
	defer C.free(unsafe.Pointer(c.model.vits.data_dir))

	c.model.vits.noise_scale = C.float(config.Model.Vits.NoiseScale)
	c.model.vits.noise_scale_w = C.float(config.Model.Vits.NoiseScaleW)
	c.model.vits.length_scale = C.float(config.Model.Vits.LengthScale)

	c.model.num_threads = C.int(config.Model.NumThreads)
	c.model.debug = C.int(config.Model.Debug)

	c.model.provider = C.CString(config.Model.Provider)
	defer C.free(unsafe.Pointer(c.model.provider))

	tts := &OfflineTts{}
	tts.impl = C.SherpaOnnxCreateOfflineTts(&c)

	return tts
}

func (tts *OfflineTts) Generate(text string, sid int, speed float32) *GeneratedAudio {
	s := C.CString(text)
	defer C.free(unsafe.Pointer(s))

	audio := C.SherpaOnnxOfflineTtsGenerate(tts.impl, s, C.int(sid), C.float(speed))
	defer C.SherpaOnnxDestroyOfflineTtsGeneratedAudio(audio)

	ans := &GeneratedAudio{}
	ans.SampleRate = int(audio.sample_rate)
	n := int(audio.n)
	ans.Samples = make([]float32, n)
	samples := (*[1 << 28]C.float)(unsafe.Pointer(audio.samples))[:n:n]
	// copy(ans.Samples, samples)
	for i := 0; i < n; i++ {
		ans.Samples[i] = float32(samples[i])
	}

	return ans
}

func (audio *GeneratedAudio) Save(filename string) int {
	s := C.CString(filename)
	defer C.free(unsafe.Pointer(s))

	ok := int(C.SherpaOnnxWriteWave((*C.float)(&audio.Samples[0]), C.int(len(audio.Samples)), C.int(audio.SampleRate), s))

	return ok
}