online-recognizer.cc
11.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
// sherpa-onnx/csrc/online-recognizer.cc
//
// Copyright (c) 2023 Xiaomi Corporation
// Copyright (c) 2023 Pingfeng Luo
#include "sherpa-onnx/csrc/online-recognizer.h"
#include <assert.h>
#include <algorithm>
#include <iomanip>
#include <memory>
#include <sstream>
#include <utility>
#include <vector>
#include "nlohmann/json.hpp"
#include "sherpa-onnx/csrc/file-utils.h"
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/online-lm.h"
#include "sherpa-onnx/csrc/online-transducer-decoder.h"
#include "sherpa-onnx/csrc/online-transducer-greedy-search-decoder.h"
#include "sherpa-onnx/csrc/online-transducer-model.h"
#include "sherpa-onnx/csrc/online-transducer-modified-beam-search-decoder.h"
#include "sherpa-onnx/csrc/symbol-table.h"
namespace sherpa_onnx {
std::string OnlineRecognizerResult::AsJsonString() const {
using json = nlohmann::json;
json j;
j["text"] = text;
j["tokens"] = tokens;
j["start_time"] = start_time;
#if 1
// This branch chooses number of decimal points to keep in
// the return json string
std::ostringstream os;
os << "[";
std::string sep = "";
for (auto t : timestamps) {
os << sep << std::fixed << std::setprecision(2) << t;
sep = ", ";
}
os << "]";
j["timestamps"] = os.str();
#else
j["timestamps"] = timestamps;
#endif
j["segment"] = segment;
j["is_final"] = is_final;
return j.dump();
}
static OnlineRecognizerResult Convert(const OnlineTransducerDecoderResult &src,
const SymbolTable &sym_table,
int32_t frame_shift_ms,
int32_t subsampling_factor) {
OnlineRecognizerResult r;
r.tokens.reserve(src.tokens.size());
r.timestamps.reserve(src.tokens.size());
for (auto i : src.tokens) {
auto sym = sym_table[i];
r.text.append(sym);
r.tokens.push_back(std::move(sym));
}
float frame_shift_s = frame_shift_ms / 1000. * subsampling_factor;
for (auto t : src.timestamps) {
float time = frame_shift_s * t;
r.timestamps.push_back(time);
}
return r;
}
void OnlineRecognizerConfig::Register(ParseOptions *po) {
feat_config.Register(po);
model_config.Register(po);
endpoint_config.Register(po);
lm_config.Register(po);
po->Register("enable-endpoint", &enable_endpoint,
"True to enable endpoint detection. False to disable it.");
po->Register("max-active-paths", &max_active_paths,
"beam size used in modified beam search.");
po->Register("context-score", &context_score,
"The bonus score for each token in context word/phrase. "
"Used only when decoding_method is modified_beam_search");
po->Register("decoding-method", &decoding_method,
"decoding method,"
"now support greedy_search and modified_beam_search.");
}
bool OnlineRecognizerConfig::Validate() const {
if (decoding_method == "modified_beam_search" && !lm_config.model.empty()) {
if (max_active_paths <= 0) {
SHERPA_ONNX_LOGE("max_active_paths is less than 0! Given: %d",
max_active_paths);
return false;
}
if (!lm_config.Validate()) return false;
}
return model_config.Validate();
}
std::string OnlineRecognizerConfig::ToString() const {
std::ostringstream os;
os << "OnlineRecognizerConfig(";
os << "feat_config=" << feat_config.ToString() << ", ";
os << "model_config=" << model_config.ToString() << ", ";
os << "lm_config=" << lm_config.ToString() << ", ";
os << "endpoint_config=" << endpoint_config.ToString() << ", ";
os << "enable_endpoint=" << (enable_endpoint ? "True" : "False") << ", ";
os << "max_active_paths=" << max_active_paths << ", ";
os << "context_score=" << context_score << ", ";
os << "decoding_method=\"" << decoding_method << "\")";
return os.str();
}
class OnlineRecognizer::Impl {
public:
explicit Impl(const OnlineRecognizerConfig &config)
: config_(config),
model_(OnlineTransducerModel::Create(config.model_config)),
sym_(config.model_config.tokens),
endpoint_(config_.endpoint_config) {
if (config.decoding_method == "modified_beam_search") {
if (!config_.lm_config.model.empty()) {
lm_ = OnlineLM::Create(config.lm_config);
}
decoder_ = std::make_unique<OnlineTransducerModifiedBeamSearchDecoder>(
model_.get(), lm_.get(), config_.max_active_paths,
config_.lm_config.scale);
} else if (config.decoding_method == "greedy_search") {
decoder_ =
std::make_unique<OnlineTransducerGreedySearchDecoder>(model_.get());
} else {
SHERPA_ONNX_LOGE("Unsupported decoding method: %s",
config.decoding_method.c_str());
exit(-1);
}
}
#if __ANDROID_API__ >= 9
explicit Impl(AAssetManager *mgr, const OnlineRecognizerConfig &config)
: config_(config),
model_(OnlineTransducerModel::Create(mgr, config.model_config)),
sym_(mgr, config.model_config.tokens),
endpoint_(config_.endpoint_config) {
if (config.decoding_method == "modified_beam_search") {
decoder_ = std::make_unique<OnlineTransducerModifiedBeamSearchDecoder>(
model_.get(), lm_.get(), config_.max_active_paths,
config_.lm_config.scale);
} else if (config.decoding_method == "greedy_search") {
decoder_ =
std::make_unique<OnlineTransducerGreedySearchDecoder>(model_.get());
} else {
SHERPA_ONNX_LOGE("Unsupported decoding method: %s",
config.decoding_method.c_str());
exit(-1);
}
}
#endif
void InitOnlineStream(OnlineStream *stream) const {
auto r = decoder_->GetEmptyResult();
if (config_.decoding_method == "modified_beam_search" &&
nullptr != stream->GetContextGraph()) {
// r.hyps has only one element.
for (auto it = r.hyps.begin(); it != r.hyps.end(); ++it) {
it->second.context_state = stream->GetContextGraph()->Root();
}
}
stream->SetResult(r);
stream->SetStates(model_->GetEncoderInitStates());
}
std::unique_ptr<OnlineStream> CreateStream() const {
auto stream = std::make_unique<OnlineStream>(config_.feat_config);
InitOnlineStream(stream.get());
return stream;
}
std::unique_ptr<OnlineStream> CreateStream(
const std::vector<std::vector<int32_t>> &contexts) const {
// We create context_graph at this level, because we might have default
// context_graph(will be added later if needed) that belongs to the whole
// model rather than each stream.
auto context_graph =
std::make_shared<ContextGraph>(contexts, config_.context_score);
auto stream =
std::make_unique<OnlineStream>(config_.feat_config, context_graph);
InitOnlineStream(stream.get());
return stream;
}
bool IsReady(OnlineStream *s) const {
return s->GetNumProcessedFrames() + model_->ChunkSize() <
s->NumFramesReady();
}
void DecodeStreams(OnlineStream **ss, int32_t n) const {
int32_t chunk_size = model_->ChunkSize();
int32_t chunk_shift = model_->ChunkShift();
int32_t feature_dim = ss[0]->FeatureDim();
std::vector<OnlineTransducerDecoderResult> results(n);
std::vector<float> features_vec(n * chunk_size * feature_dim);
std::vector<std::vector<Ort::Value>> states_vec(n);
std::vector<int64_t> all_processed_frames(n);
bool has_context_graph = false;
for (int32_t i = 0; i != n; ++i) {
if (!has_context_graph && ss[i]->GetContextGraph())
has_context_graph = true;
const auto num_processed_frames = ss[i]->GetNumProcessedFrames();
std::vector<float> features =
ss[i]->GetFrames(num_processed_frames, chunk_size);
// Question: should num_processed_frames include chunk_shift?
ss[i]->GetNumProcessedFrames() += chunk_shift;
std::copy(features.begin(), features.end(),
features_vec.data() + i * chunk_size * feature_dim);
results[i] = std::move(ss[i]->GetResult());
states_vec[i] = std::move(ss[i]->GetStates());
all_processed_frames[i] = num_processed_frames;
}
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::array<int64_t, 3> x_shape{n, chunk_size, feature_dim};
Ort::Value x = Ort::Value::CreateTensor(memory_info, features_vec.data(),
features_vec.size(), x_shape.data(),
x_shape.size());
std::array<int64_t, 1> processed_frames_shape{
static_cast<int64_t>(all_processed_frames.size())};
Ort::Value processed_frames = Ort::Value::CreateTensor(
memory_info, all_processed_frames.data(), all_processed_frames.size(),
processed_frames_shape.data(), processed_frames_shape.size());
auto states = model_->StackStates(states_vec);
auto pair = model_->RunEncoder(std::move(x), std::move(states),
std::move(processed_frames));
if (has_context_graph) {
decoder_->Decode(std::move(pair.first), ss, &results);
} else {
decoder_->Decode(std::move(pair.first), &results);
}
std::vector<std::vector<Ort::Value>> next_states =
model_->UnStackStates(pair.second);
for (int32_t i = 0; i != n; ++i) {
ss[i]->SetResult(results[i]);
ss[i]->SetStates(std::move(next_states[i]));
}
}
OnlineRecognizerResult GetResult(OnlineStream *s) const {
OnlineTransducerDecoderResult decoder_result = s->GetResult();
decoder_->StripLeadingBlanks(&decoder_result);
// TODO(fangjun): Remember to change these constants if needed
int32_t frame_shift_ms = 10;
int32_t subsampling_factor = 4;
return Convert(decoder_result, sym_, frame_shift_ms, subsampling_factor);
}
bool IsEndpoint(OnlineStream *s) const {
if (!config_.enable_endpoint) return false;
int32_t num_processed_frames = s->GetNumProcessedFrames();
// frame shift is 10 milliseconds
float frame_shift_in_seconds = 0.01;
// subsampling factor is 4
int32_t trailing_silence_frames = s->GetResult().num_trailing_blanks * 4;
return endpoint_.IsEndpoint(num_processed_frames, trailing_silence_frames,
frame_shift_in_seconds);
}
void Reset(OnlineStream *s) const {
// we keep the decoder_out
decoder_->UpdateDecoderOut(&s->GetResult());
Ort::Value decoder_out = std::move(s->GetResult().decoder_out);
s->SetResult(decoder_->GetEmptyResult());
s->GetResult().decoder_out = std::move(decoder_out);
// Note: We only update counters. The underlying audio samples
// are not discarded.
s->Reset();
}
private:
OnlineRecognizerConfig config_;
std::unique_ptr<OnlineTransducerModel> model_;
std::unique_ptr<OnlineLM> lm_;
std::unique_ptr<OnlineTransducerDecoder> decoder_;
SymbolTable sym_;
Endpoint endpoint_;
};
OnlineRecognizer::OnlineRecognizer(const OnlineRecognizerConfig &config)
: impl_(std::make_unique<Impl>(config)) {}
#if __ANDROID_API__ >= 9
OnlineRecognizer::OnlineRecognizer(AAssetManager *mgr,
const OnlineRecognizerConfig &config)
: impl_(std::make_unique<Impl>(mgr, config)) {}
#endif
OnlineRecognizer::~OnlineRecognizer() = default;
std::unique_ptr<OnlineStream> OnlineRecognizer::CreateStream() const {
return impl_->CreateStream();
}
std::unique_ptr<OnlineStream> OnlineRecognizer::CreateStream(
const std::vector<std::vector<int32_t>> &context_list) const {
return impl_->CreateStream(context_list);
}
bool OnlineRecognizer::IsReady(OnlineStream *s) const {
return impl_->IsReady(s);
}
void OnlineRecognizer::DecodeStreams(OnlineStream **ss, int32_t n) const {
impl_->DecodeStreams(ss, n);
}
OnlineRecognizerResult OnlineRecognizer::GetResult(OnlineStream *s) const {
return impl_->GetResult(s);
}
bool OnlineRecognizer::IsEndpoint(OnlineStream *s) const {
return impl_->IsEndpoint(s);
}
void OnlineRecognizer::Reset(OnlineStream *s) const { impl_->Reset(s); }
} // namespace sherpa_onnx