test_online_recognizer.py
6.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# sherpa-onnx/python/tests/test_online_recognizer.py
#
# Copyright (c) 2023 Xiaomi Corporation
#
# To run this single test, use
#
# ctest --verbose -R test_online_recognizer_py
import unittest
import wave
from pathlib import Path
from typing import Tuple
import numpy as np
import sherpa_onnx
d = "/tmp/icefall-models"
# Please refer to
# https://k2-fsa.github.io/sherpa/onnx/pretrained_models/online-transducer/index.html
# to download pre-trained models for testing
def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]:
"""
Args:
wave_filename:
Path to a wave file. It should be single channel and each sample should
be 16-bit. Its sample rate does not need to be 16kHz.
Returns:
Return a tuple containing:
- A 1-D array of dtype np.float32 containing the samples, which are
normalized to the range [-1, 1].
- sample rate of the wave file
"""
with wave.open(wave_filename) as f:
assert f.getnchannels() == 1, f.getnchannels()
assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes
num_samples = f.getnframes()
samples = f.readframes(num_samples)
samples_int16 = np.frombuffer(samples, dtype=np.int16)
samples_float32 = samples_int16.astype(np.float32)
samples_float32 = samples_float32 / 32768
return samples_float32, f.getframerate()
class TestOnlineRecognizer(unittest.TestCase):
def test_transducer_single_file(self):
for use_int8 in [True, False]:
if use_int8:
encoder = f"{d}/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/encoder-epoch-99-avg-1.int8.onnx"
decoder = f"{d}/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/decoder-epoch-99-avg-1.int8.onnx"
joiner = f"{d}/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/joiner-epoch-99-avg-1.int8.onnx"
else:
encoder = f"{d}/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/encoder-epoch-99-avg-1.onnx"
decoder = f"{d}/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/decoder-epoch-99-avg-1.onnx"
joiner = f"{d}/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/joiner-epoch-99-avg-1.onnx"
tokens = f"{d}/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/tokens.txt"
wave0 = f"{d}/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/test_wavs/0.wav"
if not Path(encoder).is_file():
print("skipping test_transducer_single_file()")
return
for decoding_method in ["greedy_search", "modified_beam_search"]:
recognizer = sherpa_onnx.OnlineRecognizer(
encoder=encoder,
decoder=decoder,
joiner=joiner,
tokens=tokens,
num_threads=1,
decoding_method=decoding_method,
)
s = recognizer.create_stream()
samples, sample_rate = read_wave(wave0)
s.accept_waveform(sample_rate, samples)
tail_paddings = np.zeros(int(0.2 * sample_rate), dtype=np.float32)
s.accept_waveform(sample_rate, tail_paddings)
s.input_finished()
while recognizer.is_ready(s):
recognizer.decode_stream(s)
print(recognizer.get_result(s))
def test_transducer_multiple_files(self):
for use_int8 in [True, False]:
if use_int8:
encoder = f"{d}/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/encoder-epoch-99-avg-1.int8.onnx"
decoder = f"{d}/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/decoder-epoch-99-avg-1.int8.onnx"
joiner = f"{d}/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/joiner-epoch-99-avg-1.int8.onnx"
else:
encoder = f"{d}/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/encoder-epoch-99-avg-1.onnx"
decoder = f"{d}/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/decoder-epoch-99-avg-1.onnx"
joiner = f"{d}/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/joiner-epoch-99-avg-1.onnx"
tokens = f"{d}/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/tokens.txt"
wave0 = f"{d}/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/test_wavs/0.wav"
wave1 = f"{d}/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/test_wavs/1.wav"
wave2 = f"{d}/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/test_wavs/2.wav"
wave3 = f"{d}/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/test_wavs/3.wav"
wave4 = f"{d}/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/test_wavs/8k.wav"
if not Path(encoder).is_file():
print("skipping test_transducer_multiple_files()")
return
for decoding_method in ["greedy_search", "modified_beam_search"]:
recognizer = sherpa_onnx.OnlineRecognizer(
encoder=encoder,
decoder=decoder,
joiner=joiner,
tokens=tokens,
num_threads=1,
decoding_method=decoding_method,
)
streams = []
waves = [wave0, wave1, wave2, wave3, wave4]
for wave in waves:
s = recognizer.create_stream()
samples, sample_rate = read_wave(wave)
s.accept_waveform(sample_rate, samples)
tail_paddings = np.zeros(int(0.2 * sample_rate), dtype=np.float32)
s.accept_waveform(sample_rate, tail_paddings)
s.input_finished()
streams.append(s)
while True:
ready_list = []
for s in streams:
if recognizer.is_ready(s):
ready_list.append(s)
if len(ready_list) == 0:
break
recognizer.decode_streams(ready_list)
results = [recognizer.get_result(s) for s in streams]
for wave_filename, result in zip(waves, results):
print(f"{wave_filename}\n{result}")
print("-" * 10)
if __name__ == "__main__":
unittest.main()