test_offline_recognizer.py
7.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# sherpa-onnx/python/tests/test_offline_recognizer.py
#
# Copyright (c) 2023 Xiaomi Corporation
#
# To run this single test, use
#
# ctest --verbose -R test_offline_recognizer_py
import unittest
import wave
from pathlib import Path
from typing import Tuple
import numpy as np
import sherpa_onnx
d = "/tmp/icefall-models"
# Please refer to
# https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-transducer/index.html
# and
# https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-paraformer/index.html
# to download pre-trained models for testing
def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]:
"""
Args:
wave_filename:
Path to a wave file. It should be single channel and each sample should
be 16-bit. Its sample rate does not need to be 16kHz.
Returns:
Return a tuple containing:
- A 1-D array of dtype np.float32 containing the samples, which are
normalized to the range [-1, 1].
- sample rate of the wave file
"""
with wave.open(wave_filename) as f:
assert f.getnchannels() == 1, f.getnchannels()
assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes
num_samples = f.getnframes()
samples = f.readframes(num_samples)
samples_int16 = np.frombuffer(samples, dtype=np.int16)
samples_float32 = samples_int16.astype(np.float32)
samples_float32 = samples_float32 / 32768
return samples_float32, f.getframerate()
class TestOfflineRecognizer(unittest.TestCase):
def test_transducer_single_file(self):
for use_int8 in [True, False]:
if use_int8:
encoder = f"{d}/sherpa-onnx-zipformer-en-2023-04-01/encoder-epoch-99-avg-1.int8.onnx"
decoder = f"{d}/sherpa-onnx-zipformer-en-2023-04-01/decoder-epoch-99-avg-1.int8.onnx"
joiner = f"{d}/sherpa-onnx-zipformer-en-2023-04-01/joiner-epoch-99-avg-1.int8.onnx"
else:
encoder = f"{d}/sherpa-onnx-zipformer-en-2023-04-01/encoder-epoch-99-avg-1.onnx"
decoder = f"{d}/sherpa-onnx-zipformer-en-2023-04-01/decoder-epoch-99-avg-1.onnx"
joiner = f"{d}/sherpa-onnx-zipformer-en-2023-04-01/joiner-epoch-99-avg-1.onnx"
tokens = f"{d}/sherpa-onnx-zipformer-en-2023-04-01/tokens.txt"
wave0 = f"{d}/sherpa-onnx-zipformer-en-2023-04-01/test_wavs/0.wav"
if not Path(encoder).is_file():
print("skipping test_transducer_single_file()")
return
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
encoder=encoder,
decoder=decoder,
joiner=joiner,
tokens=tokens,
num_threads=1,
)
s = recognizer.create_stream()
samples, sample_rate = read_wave(wave0)
s.accept_waveform(sample_rate, samples)
recognizer.decode_stream(s)
print(s.result.text)
def test_transducer_multiple_files(self):
for use_int8 in [True, False]:
if use_int8:
encoder = f"{d}/sherpa-onnx-zipformer-en-2023-04-01/encoder-epoch-99-avg-1.int8.onnx"
decoder = f"{d}/sherpa-onnx-zipformer-en-2023-04-01/decoder-epoch-99-avg-1.int8.onnx"
joiner = f"{d}/sherpa-onnx-zipformer-en-2023-04-01/joiner-epoch-99-avg-1.int8.onnx"
else:
encoder = f"{d}/sherpa-onnx-zipformer-en-2023-04-01/encoder-epoch-99-avg-1.onnx"
decoder = f"{d}/sherpa-onnx-zipformer-en-2023-04-01/decoder-epoch-99-avg-1.onnx"
joiner = f"{d}/sherpa-onnx-zipformer-en-2023-04-01/joiner-epoch-99-avg-1.onnx"
tokens = f"{d}/sherpa-onnx-zipformer-en-2023-04-01/tokens.txt"
wave0 = f"{d}/sherpa-onnx-zipformer-en-2023-04-01/test_wavs/0.wav"
wave1 = f"{d}/sherpa-onnx-zipformer-en-2023-04-01/test_wavs/1.wav"
wave2 = f"{d}/sherpa-onnx-zipformer-en-2023-04-01/test_wavs/8k.wav"
if not Path(encoder).is_file():
print("skipping test_transducer_multiple_files()")
return
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
encoder=encoder,
decoder=decoder,
joiner=joiner,
tokens=tokens,
num_threads=1,
)
s0 = recognizer.create_stream()
samples0, sample_rate0 = read_wave(wave0)
s0.accept_waveform(sample_rate0, samples0)
s1 = recognizer.create_stream()
samples1, sample_rate1 = read_wave(wave1)
s1.accept_waveform(sample_rate1, samples1)
s2 = recognizer.create_stream()
samples2, sample_rate2 = read_wave(wave2)
s2.accept_waveform(sample_rate2, samples2)
recognizer.decode_streams([s0, s1, s2])
print(s0.result.text)
print(s1.result.text)
print(s2.result.text)
def test_paraformer_single_file(self):
for use_int8 in [True, False]:
if use_int8:
model = f"{d}/sherpa-onnx-paraformer-zh-2023-03-28/model.int8.onnx"
else:
model = f"{d}/sherpa-onnx-paraformer-zh-2023-03-28/model.onnx"
tokens = f"{d}/sherpa-onnx-paraformer-zh-2023-03-28/tokens.txt"
wave0 = f"{d}/sherpa-onnx-paraformer-zh-2023-03-28/test_wavs/0.wav"
if not Path(model).is_file():
print("skipping test_paraformer_single_file()")
return
recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer(
paraformer=model,
tokens=tokens,
num_threads=1,
)
s = recognizer.create_stream()
samples, sample_rate = read_wave(wave0)
s.accept_waveform(sample_rate, samples)
recognizer.decode_stream(s)
print(s.result.text)
def test_paraformer_multiple_files(self):
for use_int8 in [True, False]:
if use_int8:
model = f"{d}/sherpa-onnx-paraformer-zh-2023-03-28/model.int8.onnx"
else:
model = f"{d}/sherpa-onnx-paraformer-zh-2023-03-28/model.onnx"
tokens = f"{d}/sherpa-onnx-paraformer-zh-2023-03-28/tokens.txt"
wave0 = f"{d}/sherpa-onnx-paraformer-zh-2023-03-28/test_wavs/0.wav"
wave1 = f"{d}/sherpa-onnx-paraformer-zh-2023-03-28/test_wavs/1.wav"
wave2 = f"{d}/sherpa-onnx-paraformer-zh-2023-03-28/test_wavs/2.wav"
wave3 = f"{d}/sherpa-onnx-paraformer-zh-2023-03-28/test_wavs/8k.wav"
if not Path(model).is_file():
print("skipping test_paraformer_multiple_files()")
return
recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer(
paraformer=model,
tokens=tokens,
num_threads=1,
)
s0 = recognizer.create_stream()
samples0, sample_rate0 = read_wave(wave0)
s0.accept_waveform(sample_rate0, samples0)
s1 = recognizer.create_stream()
samples1, sample_rate1 = read_wave(wave1)
s1.accept_waveform(sample_rate1, samples1)
s2 = recognizer.create_stream()
samples2, sample_rate2 = read_wave(wave2)
s2.accept_waveform(sample_rate2, samples2)
s3 = recognizer.create_stream()
samples3, sample_rate3 = read_wave(wave3)
s3.accept_waveform(sample_rate3, samples3)
recognizer.decode_streams([s0, s1, s2, s3])
print(s0.result.text)
print(s1.result.text)
print(s2.result.text)
print(s3.result.text)
if __name__ == "__main__":
unittest.main()