SherpaOnnxViewModel.swift
7.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
//
// SherpaOnnxViewModel.swift
// SherpaOnnx
//
// Created by knight on 2023/4/5.
//
import Foundation
import AVFoundation
enum Status {
case stop
case recording
}
class SherpaOnnxViewModel: ObservableObject {
@Published var status: Status = .stop
@Published var subtitles: String = ""
var sentences: [String] = []
var samplesBuffer = [[Float]] ()
var audioEngine: AVAudioEngine? = nil
var recognizer: SherpaOnnxRecognizer! = nil
var offlineRecognizer: SherpaOnnxOfflineRecognizer! = nil
var lastSentence: String = ""
// let maxSentence: Int = 10 // for Chinese
let maxSentence: Int = 6 // for English
var results: String {
if sentences.isEmpty && lastSentence.isEmpty {
return ""
}
if sentences.isEmpty {
return "0: \(lastSentence.lowercased())"
}
let start = max(sentences.count - maxSentence, 0)
if lastSentence.isEmpty {
return sentences.enumerated().map { (index, s) in "\(index): \(s.lowercased())" }[start...]
.joined(separator: "\n")
} else {
return sentences.enumerated().map { (index, s) in "\(index): \(s.lowercased())" }[start...]
.joined(separator: "\n") + "\n\(sentences.count): \(lastSentence.lowercased())"
}
}
func updateLabel() {
DispatchQueue.main.async {
self.subtitles = self.results
}
}
init() {
initRecognizer()
initOfflineRecognizer()
initRecorder()
}
private func initRecognizer() {
// Please select one model that is best suitable for you.
//
// You can also modify Model.swift to add new pre-trained models from
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
// let modelConfig = getBilingualStreamingZhEnZipformer20230220()
/* let modelConfig = getStreamingZh14MZipformer20230223() */
let modelConfig = getStreamingEn20MZipformer20230217()
let featConfig = sherpaOnnxFeatureConfig(
sampleRate: 16000,
featureDim: 80)
var config = sherpaOnnxOnlineRecognizerConfig(
featConfig: featConfig,
modelConfig: modelConfig,
enableEndpoint: true,
rule1MinTrailingSilence: 2.4,
// rule2MinTrailingSilence: 1.2, // for Chinese
rule2MinTrailingSilence: 0.5, // for English
rule3MinUtteranceLength: 30,
decodingMethod: "greedy_search",
maxActivePaths: 4
)
recognizer = SherpaOnnxRecognizer(config: &config)
}
private func initOfflineRecognizer() {
// let modelConfig = getNonStreamingZhParaformer20230914()
let modelConfig = getNonStreamingWhisperTinyEn()
// let modelConfig = getNonStreamingEnZipformer20230504()
let featConfig = sherpaOnnxFeatureConfig(
sampleRate: 16000,
featureDim: 80)
var config = sherpaOnnxOfflineRecognizerConfig(
featConfig: featConfig,
modelConfig: modelConfig,
decodingMethod: "greedy_search",
maxActivePaths: 4
)
offlineRecognizer = SherpaOnnxOfflineRecognizer(config: &config)
}
private func initRecorder() {
print("init recorder")
audioEngine = AVAudioEngine()
let inputNode = self.audioEngine?.inputNode
let bus = 0
let inputFormat = inputNode?.outputFormat(forBus: bus)
let outputFormat = AVAudioFormat(
commonFormat: .pcmFormatFloat32,
sampleRate: 16000, channels: 1,
interleaved: false)!
let converter = AVAudioConverter(from: inputFormat!, to: outputFormat)!
inputNode!.installTap(
onBus: bus,
bufferSize: 1024,
format: inputFormat
) {
(buffer: AVAudioPCMBuffer, when: AVAudioTime) in
var newBufferAvailable = true
let inputCallback: AVAudioConverterInputBlock = {
inNumPackets, outStatus in
if newBufferAvailable {
outStatus.pointee = .haveData
newBufferAvailable = false
return buffer
} else {
outStatus.pointee = .noDataNow
return nil
}
}
let convertedBuffer = AVAudioPCMBuffer(
pcmFormat: outputFormat,
frameCapacity:
AVAudioFrameCount(outputFormat.sampleRate)
* buffer.frameLength
/ AVAudioFrameCount(buffer.format.sampleRate))!
var error: NSError?
let _ = converter.convert(
to: convertedBuffer,
error: &error, withInputFrom: inputCallback)
// TODO(fangjun): Handle status != haveData
let array = convertedBuffer.array()
if !array.isEmpty {
self.samplesBuffer.append(array)
self.recognizer.acceptWaveform(samples: array)
while (self.recognizer.isReady()){
self.recognizer.decode()
}
let isEndpoint = self.recognizer.isEndpoint()
let text = self.recognizer.getResult().text
if !text.isEmpty && self.lastSentence != text {
self.lastSentence = text
self.updateLabel()
print(text)
}
if isEndpoint{
if !text.isEmpty {
// Invoke offline recognizer
var numSamples: Int = 0
for a in self.samplesBuffer {
numSamples += a.count
}
var samples: [Float] = Array(repeating: 0, count: numSamples)
var i = 0
for a in self.samplesBuffer {
for s in a {
samples[i] = s
i += 1
}
}
// let num = 12000 // For Chinese
let num = 10000 // For English
self.lastSentence = self.offlineRecognizer.decode(samples: Array(samples[0..<samples.count-num])).text
let tmp = self.lastSentence
self.lastSentence = ""
self.sentences.append(tmp)
self.updateLabel()
i = 0
if samples.count > num {
i = samples.count - num
}
var tail: [Float] = Array(repeating: 0, count: samples.count - i)
for k in 0 ... samples.count - i - 1 {
tail[k] = samples[i+k];
}
self.samplesBuffer = [[Float]]()
self.samplesBuffer.append(tail)
} else {
self.samplesBuffer = [[Float]]()
}
self.recognizer.reset()
}
}
}
}
public func toggleRecorder() {
if status == .stop {
startRecorder()
status = .recording
} else {
stopRecorder()
status = .stop
}
}
private func startRecorder() {
lastSentence = ""
sentences = []
samplesBuffer = [[Float]] ()
updateLabel()
do {
try self.audioEngine?.start()
} catch let error as NSError {
print("Got an error starting audioEngine: \(error.domain), \(error)")
}
print("started")
}
private func stopRecorder() {
audioEngine?.stop()
print("stopped")
}
}