generate-subtitles.py 12.0 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
#!/usr/bin/env python3
#
# Copyright (c)  2023  Xiaomi Corporation

"""
This file demonstrates how to use sherpa-onnx Python APIs to generate
subtitles.

Supported file formats are those supported by ffmpeg; for instance,
*.mov, *.mp4, *.wav, etc.

Note that you need a non-streaming model for this script.

Please visit
https://github.com/snakers4/silero-vad/blob/master/files/silero_vad.onnx
to download silero_vad.onnx

For instance,

wget https://github.com/snakers4/silero-vad/raw/master/files/silero_vad.onnx

(1) For paraformer

    ./python-api-examples/generate-subtitles.py  \
      --silero-vad-model=/path/to/silero_vad.onnx \
      --tokens=/path/to/tokens.txt \
      --paraformer=/path/to/paraformer.onnx \
      --num-threads=2 \
      --decoding-method=greedy_search \
      --debug=false \
      --sample-rate=16000 \
      --feature-dim=80 \
      /path/to/test.mp4

(2) For transducer models from icefall

    ./python-api-examples/generate-subtitles.py  \
      --silero-vad-model=/path/to/silero_vad.onnx \
      --tokens=/path/to/tokens.txt \
      --encoder=/path/to/encoder.onnx \
      --decoder=/path/to/decoder.onnx \
      --joiner=/path/to/joiner.onnx \
      --num-threads=2 \
      --decoding-method=greedy_search \
      --debug=false \
      --sample-rate=16000 \
      --feature-dim=80 \
      /path/to/test.mp4

(3) For Whisper models

./python-api-examples/generate-subtitles.py  \
  --silero-vad-model=/path/to/silero_vad.onnx \
  --whisper-encoder=./sherpa-onnx-whisper-base.en/base.en-encoder.int8.onnx \
  --whisper-decoder=./sherpa-onnx-whisper-base.en/base.en-decoder.int8.onnx \
  --tokens=./sherpa-onnx-whisper-base.en/base.en-tokens.txt \
  --whisper-task=transcribe \
  --num-threads=2 \
  /path/to/test.mp4

(4) For WeNet CTC models

./python-api-examples/generate-subtitles.py  \
  --silero-vad-model=/path/to/silero_vad.onnx \
  --wenet-ctc=./sherpa-onnx-zh-wenet-wenetspeech/model.onnx \
  --tokens=./sherpa-onnx-zh-wenet-wenetspeech/tokens.txt \
  --num-threads=2 \
  /path/to/test.mp4

Please refer to
https://k2-fsa.github.io/sherpa/onnx/index.html
to install sherpa-onnx and to download non-streaming pre-trained models
used in this file.
"""
import argparse
import shutil
import subprocess
import sys
from dataclasses import dataclass
from datetime import timedelta
from pathlib import Path

import numpy as np
import sherpa_onnx


def get_args():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )

    parser.add_argument(
        "--silero-vad-model",
        type=str,
        required=True,
        help="Path to silero_vad.onnx",
    )

    parser.add_argument(
        "--tokens",
        type=str,
        help="Path to tokens.txt",
    )

    parser.add_argument(
        "--encoder",
        default="",
        type=str,
        help="Path to the transducer encoder model",
    )

    parser.add_argument(
        "--decoder",
        default="",
        type=str,
        help="Path to the transducer decoder model",
    )

    parser.add_argument(
        "--joiner",
        default="",
        type=str,
        help="Path to the transducer joiner model",
    )

    parser.add_argument(
        "--paraformer",
        default="",
        type=str,
        help="Path to the model.onnx from Paraformer",
    )

    parser.add_argument(
        "--wenet-ctc",
        default="",
        type=str,
        help="Path to the CTC model.onnx from WeNet",
    )

    parser.add_argument(
        "--num-threads",
        type=int,
        default=1,
        help="Number of threads for neural network computation",
    )

    parser.add_argument(
        "--whisper-encoder",
        default="",
        type=str,
        help="Path to whisper encoder model",
    )

    parser.add_argument(
        "--whisper-decoder",
        default="",
        type=str,
        help="Path to whisper decoder model",
    )

    parser.add_argument(
        "--whisper-language",
        default="",
        type=str,
        help="""It specifies the spoken language in the input file.
        Example values: en, fr, de, zh, jp.
        Available languages for multilingual models can be found at
        https://github.com/openai/whisper/blob/main/whisper/tokenizer.py#L10
        If not specified, we infer the language from the input audio file.
        """,
    )

    parser.add_argument(
        "--whisper-task",
        default="transcribe",
        choices=["transcribe", "translate"],
        type=str,
        help="""For multilingual models, if you specify translate, the output
        will be in English.
        """,
    )

    parser.add_argument(
        "--whisper-tail-paddings",
        default=-1,
        type=int,
        help="""Number of tail padding frames.
        We have removed the 30-second constraint from whisper, so you need to
        choose the amount of tail padding frames by yourself.
        Use -1 to use a default value for tail padding.
        """,
    )

    parser.add_argument(
        "--decoding-method",
        type=str,
        default="greedy_search",
        help="""Valid values are greedy_search and modified_beam_search.
        modified_beam_search is valid only for transducer models.
        """,
    )
    parser.add_argument(
        "--debug",
        type=bool,
        default=False,
        help="True to show debug messages when loading modes.",
    )

    parser.add_argument(
        "--sample-rate",
        type=int,
        default=16000,
        help="""Sample rate of the feature extractor. Must match the one
        expected by the model. Note: The input sound files can have a
        different sample rate from this argument.""",
    )

    parser.add_argument(
        "--feature-dim",
        type=int,
        default=80,
        help="Feature dimension. Must match the one expected by the model",
    )

    parser.add_argument(
        "sound_file",
        type=str,
        help="The input sound file to generate subtitles ",
    )

    return parser.parse_args()


def assert_file_exists(filename: str):
    assert Path(filename).is_file(), (
        f"{filename} does not exist!\n"
        "Please refer to "
        "https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html to download it"
    )


def create_recognizer(args) -> sherpa_onnx.OfflineRecognizer:
    if args.encoder:
        assert len(args.paraformer) == 0, args.paraformer
        assert len(args.wenet_ctc) == 0, args.wenet_ctc
        assert len(args.whisper_encoder) == 0, args.whisper_encoder
        assert len(args.whisper_decoder) == 0, args.whisper_decoder

        assert_file_exists(args.encoder)
        assert_file_exists(args.decoder)
        assert_file_exists(args.joiner)

        recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
            encoder=args.encoder,
            decoder=args.decoder,
            joiner=args.joiner,
            tokens=args.tokens,
            num_threads=args.num_threads,
            sample_rate=args.sample_rate,
            feature_dim=args.feature_dim,
            decoding_method=args.decoding_method,
            debug=args.debug,
        )
    elif args.paraformer:
        assert len(args.wenet_ctc) == 0, args.wenet_ctc
        assert len(args.whisper_encoder) == 0, args.whisper_encoder
        assert len(args.whisper_decoder) == 0, args.whisper_decoder

        assert_file_exists(args.paraformer)

        recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer(
            paraformer=args.paraformer,
            tokens=args.tokens,
            num_threads=args.num_threads,
            sample_rate=args.sample_rate,
            feature_dim=args.feature_dim,
            decoding_method=args.decoding_method,
            debug=args.debug,
        )
    elif args.wenet_ctc:
        assert len(args.whisper_encoder) == 0, args.whisper_encoder
        assert len(args.whisper_decoder) == 0, args.whisper_decoder

        assert_file_exists(args.wenet_ctc)

        recognizer = sherpa_onnx.OfflineRecognizer.from_wenet_ctc(
            model=args.wenet_ctc,
            tokens=args.tokens,
            num_threads=args.num_threads,
            sample_rate=args.sample_rate,
            feature_dim=args.feature_dim,
            decoding_method=args.decoding_method,
            debug=args.debug,
        )
    elif args.whisper_encoder:
        assert_file_exists(args.whisper_encoder)
        assert_file_exists(args.whisper_decoder)

        recognizer = sherpa_onnx.OfflineRecognizer.from_whisper(
            encoder=args.whisper_encoder,
            decoder=args.whisper_decoder,
            tokens=args.tokens,
            num_threads=args.num_threads,
            decoding_method=args.decoding_method,
            debug=args.debug,
            language=args.whisper_language,
            task=args.whisper_task,
            tail_paddings=args.whisper_tail_paddings,
        )
    else:
        raise ValueError("Please specify at least one model")

    return recognizer


@dataclass
class Segment:
    start: float
    duration: float
    text: str = ""

    @property
    def end(self):
        return self.start + self.duration

    def __str__(self):
        s = f"{timedelta(seconds=self.start)}"[:-3]
        s += " --> "
        s += f"{timedelta(seconds=self.end)}"[:-3]
        s = s.replace(".", ",")
        s += "\n"
        s += self.text
        return s


def main():
    args = get_args()
    assert_file_exists(args.tokens)
    assert_file_exists(args.silero_vad_model)

    assert args.num_threads > 0, args.num_threads

    if not Path(args.sound_file).is_file():
        raise ValueError(f"{args.sound_file} does not exist")

    assert (
        args.sample_rate == 16000
    ), f"Only sample rate 16000 is supported.Given: {args.sample_rate}"

    recognizer = create_recognizer(args)

    ffmpeg_cmd = [
        "ffmpeg",
        "-i",
        args.sound_file,
        "-f",
        "s16le",
        "-acodec",
        "pcm_s16le",
        "-ac",
        "1",
        "-ar",
        str(args.sample_rate),
        "-",
    ]

    process = subprocess.Popen(
        ffmpeg_cmd, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL
    )

    frames_per_read = int(args.sample_rate * 100)  # 100 second

    stream = recognizer.create_stream()

    config = sherpa_onnx.VadModelConfig()
    config.silero_vad.model = args.silero_vad_model
    config.silero_vad.min_silence_duration = 0.25
    config.sample_rate = args.sample_rate

    window_size = config.silero_vad.window_size

    buffer = []
    vad = sherpa_onnx.VoiceActivityDetector(config, buffer_size_in_seconds=100)

    segment_list = []

    print("Started!")

    # TODO(fangjun): Support multithreads
    while True:
        # *2 because int16_t has two bytes
        data = process.stdout.read(frames_per_read * 2)
        if not data:
            break

        samples = np.frombuffer(data, dtype=np.int16)
        samples = samples.astype(np.float32) / 32768

        buffer = np.concatenate([buffer, samples])
        while len(buffer) > window_size:
            vad.accept_waveform(buffer[:window_size])
            buffer = buffer[window_size:]

        streams = []
        segments = []
        while not vad.empty():
            segment = Segment(
                start=vad.front.start / args.sample_rate,
                duration=len(vad.front.samples) / args.sample_rate,
            )
            segments.append(segment)

            stream = recognizer.create_stream()
            stream.accept_waveform(args.sample_rate, vad.front.samples)

            streams.append(stream)

            vad.pop()

        for s in streams:
            recognizer.decode_stream(s)

        for seg, stream in zip(segments, streams):
            seg.text = stream.result.text
            segment_list.append(seg)

    srt_filename = Path(args.sound_file).with_suffix(".srt")
    with open(srt_filename, "w", encoding="utf-8") as f:
        for i, seg in enumerate(segment_list):
            print(i + 1, file=f)
            print(seg, file=f)
            print("", file=f)

    print(f"Saved to {srt_filename}")
    print("Done!")


if __name__ == "__main__":
    if shutil.which("ffmpeg") is None:
        sys.exit("Please install ffmpeg first!")
    main()