Main.kt
6.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
package com.k2fsa.sherpa.onnx
import android.content.res.AssetManager
fun callback(samples: FloatArray): Unit {
println("callback got called with ${samples.size} samples");
}
fun main() {
testAudioTagging()
testSpeakerRecognition()
testTts()
testAsr("transducer")
testAsr("zipformer2-ctc")
}
fun testAudioTagging() {
val config = AudioTaggingConfig(
model=AudioTaggingModelConfig(
zipformer=OfflineZipformerAudioTaggingModelConfig(
model="./sherpa-onnx-zipformer-audio-tagging-2024-04-09/model.int8.onnx",
),
numThreads=1,
debug=true,
provider="cpu",
),
labels="./sherpa-onnx-zipformer-audio-tagging-2024-04-09/class_labels_indices.csv",
topK=5,
)
val tagger = AudioTagging(assetManager=null, config=config)
val testFiles = arrayOf(
"./sherpa-onnx-zipformer-audio-tagging-2024-04-09/test_wavs/1.wav",
"./sherpa-onnx-zipformer-audio-tagging-2024-04-09/test_wavs/2.wav",
"./sherpa-onnx-zipformer-audio-tagging-2024-04-09/test_wavs/3.wav",
"./sherpa-onnx-zipformer-audio-tagging-2024-04-09/test_wavs/4.wav",
)
println("----------")
for (waveFilename in testFiles) {
val stream = tagger.createStream()
val objArray = WaveReader.readWaveFromFile(
filename = waveFilename,
)
val samples: FloatArray = objArray[0] as FloatArray
val sampleRate: Int = objArray[1] as Int
stream.acceptWaveform(samples, sampleRate = sampleRate)
val events = tagger.compute(stream)
stream.release()
println(waveFilename)
println(events)
println("----------")
}
tagger.release()
}
fun computeEmbedding(extractor: SpeakerEmbeddingExtractor, filename: String): FloatArray {
var objArray = WaveReader.readWaveFromFile(
filename = filename,
)
var samples: FloatArray = objArray[0] as FloatArray
var sampleRate: Int = objArray[1] as Int
val stream = extractor.createStream()
stream.acceptWaveform(sampleRate = sampleRate, samples=samples)
stream.inputFinished()
check(extractor.isReady(stream))
val embedding = extractor.compute(stream)
stream.release()
return embedding
}
fun testSpeakerRecognition() {
val config = SpeakerEmbeddingExtractorConfig(
model="./3dspeaker_speech_eres2net_large_sv_zh-cn_3dspeaker_16k.onnx",
)
val extractor = SpeakerEmbeddingExtractor(config = config)
val embedding1a = computeEmbedding(extractor, "./speaker1_a_cn_16k.wav")
val embedding2a = computeEmbedding(extractor, "./speaker2_a_cn_16k.wav")
val embedding1b = computeEmbedding(extractor, "./speaker1_b_cn_16k.wav")
var manager = SpeakerEmbeddingManager(extractor.dim())
var ok = manager.add(name = "speaker1", embedding=embedding1a)
check(ok)
manager.add(name = "speaker2", embedding=embedding2a)
check(ok)
var name = manager.search(embedding=embedding1b, threshold=0.5f)
check(name == "speaker1")
manager.release()
manager = SpeakerEmbeddingManager(extractor.dim())
val embeddingList = mutableListOf(embedding1a, embedding1b)
ok = manager.add(name = "s1", embedding=embeddingList.toTypedArray())
check(ok)
name = manager.search(embedding=embedding1b, threshold=0.5f)
check(name == "s1")
name = manager.search(embedding=embedding2a, threshold=0.5f)
check(name.length == 0)
manager.release()
}
fun testTts() {
// see https://github.com/k2-fsa/sherpa-onnx/releases/tag/tts-models
// https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/vits-piper-en_US-amy-low.tar.bz2
var config = OfflineTtsConfig(
model=OfflineTtsModelConfig(
vits=OfflineTtsVitsModelConfig(
model="./vits-piper-en_US-amy-low/en_US-amy-low.onnx",
tokens="./vits-piper-en_US-amy-low/tokens.txt",
dataDir="./vits-piper-en_US-amy-low/espeak-ng-data",
),
numThreads=1,
debug=true,
)
)
val tts = OfflineTts(config=config)
val audio = tts.generateWithCallback(text="“Today as always, men fall into two groups: slaves and free men. Whoever does not have two-thirds of his day for himself, is a slave, whatever he may be: a statesman, a businessman, an official, or a scholar.”", callback=::callback)
audio.save(filename="test-en.wav")
}
fun testAsr(type: String) {
var featConfig = FeatureConfig(
sampleRate = 16000,
featureDim = 80,
)
var waveFilename: String
var modelConfig: OnlineModelConfig = when (type) {
"transducer" -> {
waveFilename = "./sherpa-onnx-streaming-zipformer-en-2023-02-21/test_wavs/0.wav"
// please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
// to dowload pre-trained models
OnlineModelConfig(
transducer = OnlineTransducerModelConfig(
encoder = "./sherpa-onnx-streaming-zipformer-en-2023-02-21/encoder-epoch-99-avg-1.onnx",
decoder = "./sherpa-onnx-streaming-zipformer-en-2023-02-21/decoder-epoch-99-avg-1.onnx",
joiner = "./sherpa-onnx-streaming-zipformer-en-2023-02-21/joiner-epoch-99-avg-1.onnx",
),
tokens = "./sherpa-onnx-streaming-zipformer-en-2023-02-21/tokens.txt",
numThreads = 1,
debug = false,
)
}
"zipformer2-ctc" -> {
waveFilename = "./sherpa-onnx-streaming-zipformer-ctc-multi-zh-hans-2023-12-13/test_wavs/DEV_T0000000000.wav"
OnlineModelConfig(
zipformer2Ctc = OnlineZipformer2CtcModelConfig(
model = "./sherpa-onnx-streaming-zipformer-ctc-multi-zh-hans-2023-12-13/ctc-epoch-20-avg-1-chunk-16-left-128.onnx",
),
tokens = "./sherpa-onnx-streaming-zipformer-ctc-multi-zh-hans-2023-12-13/tokens.txt",
numThreads = 1,
debug = false,
)
}
else -> throw IllegalArgumentException(type)
}
var endpointConfig = EndpointConfig()
var lmConfig = OnlineLMConfig()
var config = OnlineRecognizerConfig(
modelConfig = modelConfig,
lmConfig = lmConfig,
featConfig = featConfig,
endpointConfig = endpointConfig,
enableEndpoint = true,
decodingMethod = "greedy_search",
maxActivePaths = 4,
)
var model = SherpaOnnx(
config = config,
)
var objArray = WaveReader.readWaveFromFile(
filename = waveFilename,
)
var samples: FloatArray = objArray[0] as FloatArray
var sampleRate: Int = objArray[1] as Int
model.acceptWaveform(samples, sampleRate = sampleRate)
while (model.isReady()) {
model.decode()
}
var tailPaddings = FloatArray((sampleRate * 0.5).toInt()) // 0.5 seconds
model.acceptWaveform(tailPaddings, sampleRate = sampleRate)
model.inputFinished()
while (model.isReady()) {
model.decode()
}
println("results: ${model.text}")
}