online_recognizer.py
10.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# Copyright (c) 2023 Xiaomi Corporation
from pathlib import Path
from typing import List, Optional
from _sherpa_onnx import (
EndpointConfig,
FeatureExtractorConfig,
OnlineLMConfig,
OnlineModelConfig,
OnlineParaformerModelConfig,
OnlineRecognizer as _Recognizer,
OnlineRecognizerConfig,
OnlineStream,
OnlineTransducerModelConfig,
)
def _assert_file_exists(f: str):
assert Path(f).is_file(), f"{f} does not exist"
class OnlineRecognizer(object):
"""A class for streaming speech recognition.
Please refer to the following files for usages
- https://github.com/k2-fsa/sherpa-onnx/blob/master/sherpa-onnx/python/tests/test_online_recognizer.py
- https://github.com/k2-fsa/sherpa-onnx/blob/master/python-api-examples/online-decode-files.py
"""
@classmethod
def from_transducer(
cls,
tokens: str,
encoder: str,
decoder: str,
joiner: str,
num_threads: int = 2,
sample_rate: float = 16000,
feature_dim: int = 80,
enable_endpoint_detection: bool = False,
rule1_min_trailing_silence: float = 2.4,
rule2_min_trailing_silence: float = 1.2,
rule3_min_utterance_length: float = 20.0,
decoding_method: str = "greedy_search",
max_active_paths: int = 4,
hotwords_score: float = 1.5,
hotwords_file: str = "",
provider: str = "cpu",
model_type: str = "",
lm: str = "",
lm_scale: float = 0.1,
):
"""
Please refer to
`<https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html>`_
to download pre-trained models for different languages, e.g., Chinese,
English, etc.
Args:
tokens:
Path to ``tokens.txt``. Each line in ``tokens.txt`` contains two
columns::
symbol integer_id
encoder:
Path to ``encoder.onnx``.
decoder:
Path to ``decoder.onnx``.
joiner:
Path to ``joiner.onnx``.
num_threads:
Number of threads for neural network computation.
sample_rate:
Sample rate of the training data used to train the model.
feature_dim:
Dimension of the feature used to train the model.
enable_endpoint_detection:
True to enable endpoint detection. False to disable endpoint
detection.
rule1_min_trailing_silence:
Used only when enable_endpoint_detection is True. If the duration
of trailing silence in seconds is larger than this value, we assume
an endpoint is detected.
rule2_min_trailing_silence:
Used only when enable_endpoint_detection is True. If we have decoded
something that is nonsilence and if the duration of trailing silence
in seconds is larger than this value, we assume an endpoint is
detected.
rule3_min_utterance_length:
Used only when enable_endpoint_detection is True. If the utterance
length in seconds is larger than this value, we assume an endpoint
is detected.
decoding_method:
Valid values are greedy_search, modified_beam_search.
max_active_paths:
Use only when decoding_method is modified_beam_search. It specifies
the maximum number of active paths during beam search.
provider:
onnxruntime execution providers. Valid values are: cpu, cuda, coreml.
model_type:
Online transducer model type. Valid values are: conformer, lstm,
zipformer, zipformer2. All other values lead to loading the model twice.
"""
self = cls.__new__(cls)
_assert_file_exists(tokens)
_assert_file_exists(encoder)
_assert_file_exists(decoder)
_assert_file_exists(joiner)
assert num_threads > 0, num_threads
transducer_config = OnlineTransducerModelConfig(
encoder=encoder,
decoder=decoder,
joiner=joiner,
)
model_config = OnlineModelConfig(
transducer=transducer_config,
tokens=tokens,
num_threads=num_threads,
provider=provider,
model_type=model_type,
)
feat_config = FeatureExtractorConfig(
sampling_rate=sample_rate,
feature_dim=feature_dim,
)
endpoint_config = EndpointConfig(
rule1_min_trailing_silence=rule1_min_trailing_silence,
rule2_min_trailing_silence=rule2_min_trailing_silence,
rule3_min_utterance_length=rule3_min_utterance_length,
)
if len(hotwords_file) > 0 and decoding_method != "modified_beam_search":
raise ValueError(
"Please use --decoding-method=modified_beam_search when using "
f"--hotwords-file. Currently given: {decoding_method}"
)
if lm and decoding_method != "modified_beam_search":
raise ValueError(
"Please use --decoding-method=modified_beam_search when using "
f"--lm. Currently given: {decoding_method}"
)
lm_config = OnlineLMConfig(
model=lm,
scale=lm_scale,
)
recognizer_config = OnlineRecognizerConfig(
feat_config=feat_config,
model_config=model_config,
lm_config=lm_config,
endpoint_config=endpoint_config,
enable_endpoint=enable_endpoint_detection,
decoding_method=decoding_method,
max_active_paths=max_active_paths,
hotwords_score=hotwords_score,
hotwords_file=hotwords_file,
)
self.recognizer = _Recognizer(recognizer_config)
self.config = recognizer_config
return self
@classmethod
def from_paraformer(
cls,
tokens: str,
encoder: str,
decoder: str,
num_threads: int = 2,
sample_rate: float = 16000,
feature_dim: int = 80,
enable_endpoint_detection: bool = False,
rule1_min_trailing_silence: float = 2.4,
rule2_min_trailing_silence: float = 1.2,
rule3_min_utterance_length: float = 20.0,
decoding_method: str = "greedy_search",
provider: str = "cpu",
):
"""
Please refer to
`<https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html>`_
to download pre-trained models for different languages, e.g., Chinese,
English, etc.
Args:
tokens:
Path to ``tokens.txt``. Each line in ``tokens.txt`` contains two
columns::
symbol integer_id
encoder:
Path to ``encoder.onnx``.
decoder:
Path to ``decoder.onnx``.
num_threads:
Number of threads for neural network computation.
sample_rate:
Sample rate of the training data used to train the model.
feature_dim:
Dimension of the feature used to train the model.
enable_endpoint_detection:
True to enable endpoint detection. False to disable endpoint
detection.
rule1_min_trailing_silence:
Used only when enable_endpoint_detection is True. If the duration
of trailing silence in seconds is larger than this value, we assume
an endpoint is detected.
rule2_min_trailing_silence:
Used only when enable_endpoint_detection is True. If we have decoded
something that is nonsilence and if the duration of trailing silence
in seconds is larger than this value, we assume an endpoint is
detected.
rule3_min_utterance_length:
Used only when enable_endpoint_detection is True. If the utterance
length in seconds is larger than this value, we assume an endpoint
is detected.
decoding_method:
The only valid value is greedy_search.
provider:
onnxruntime execution providers. Valid values are: cpu, cuda, coreml.
"""
self = cls.__new__(cls)
_assert_file_exists(tokens)
_assert_file_exists(encoder)
_assert_file_exists(decoder)
assert num_threads > 0, num_threads
paraformer_config = OnlineParaformerModelConfig(
encoder=encoder,
decoder=decoder,
)
model_config = OnlineModelConfig(
paraformer=paraformer_config,
tokens=tokens,
num_threads=num_threads,
provider=provider,
model_type="paraformer",
)
feat_config = FeatureExtractorConfig(
sampling_rate=sample_rate,
feature_dim=feature_dim,
)
endpoint_config = EndpointConfig(
rule1_min_trailing_silence=rule1_min_trailing_silence,
rule2_min_trailing_silence=rule2_min_trailing_silence,
rule3_min_utterance_length=rule3_min_utterance_length,
)
recognizer_config = OnlineRecognizerConfig(
feat_config=feat_config,
model_config=model_config,
endpoint_config=endpoint_config,
enable_endpoint=enable_endpoint_detection,
decoding_method=decoding_method,
)
self.recognizer = _Recognizer(recognizer_config)
self.config = recognizer_config
return self
def create_stream(self, hotwords: Optional[str] = None):
if hotwords is None:
return self.recognizer.create_stream()
else:
return self.recognizer.create_stream(hotwords)
def decode_stream(self, s: OnlineStream):
self.recognizer.decode_stream(s)
def decode_streams(self, ss: List[OnlineStream]):
self.recognizer.decode_streams(ss)
def is_ready(self, s: OnlineStream) -> bool:
return self.recognizer.is_ready(s)
def get_result(self, s: OnlineStream) -> str:
return self.recognizer.get_result(s).text.strip()
def tokens(self, s: OnlineStream) -> List[str]:
return self.recognizer.get_result(s).tokens
def timestamps(self, s: OnlineStream) -> List[float]:
return self.recognizer.get_result(s).timestamps
def is_endpoint(self, s: OnlineStream) -> bool:
return self.recognizer.is_endpoint(s)
def reset(self, s: OnlineStream) -> bool:
return self.recognizer.reset(s)