offline-whisper-model.cc
7.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
// sherpa-onnx/csrc/offline-whisper-model.cc
//
// Copyright (c) 2022-2023 Xiaomi Corporation
#include "sherpa-onnx/csrc/offline-whisper-model.h"
#include <algorithm>
#include <string>
#include <tuple>
#include <utility>
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
#include "sherpa-onnx/csrc/session.h"
#include "sherpa-onnx/csrc/text-utils.h"
namespace sherpa_onnx {
class OfflineWhisperModel::Impl {
public:
explicit Impl(const OfflineModelConfig &config)
: config_(config),
env_(ORT_LOGGING_LEVEL_ERROR),
sess_opts_(GetSessionOptions(config)),
allocator_{} {
{
auto buf = ReadFile(config.whisper.encoder);
InitEncoder(buf.data(), buf.size());
}
{
auto buf = ReadFile(config.whisper.decoder);
InitDecoder(buf.data(), buf.size());
}
}
std::pair<Ort::Value, Ort::Value> ForwardEncoder(Ort::Value features) {
auto encoder_out = encoder_sess_->Run(
{}, encoder_input_names_ptr_.data(), &features, 1,
encoder_output_names_ptr_.data(), encoder_output_names_ptr_.size());
return {std::move(encoder_out[0]), std::move(encoder_out[1])};
}
std::tuple<Ort::Value, Ort::Value, Ort::Value, Ort::Value, Ort::Value,
Ort::Value>
ForwardDecoder(Ort::Value tokens, Ort::Value n_layer_self_k_cache,
Ort::Value n_layer_self_v_cache, Ort::Value n_layer_cross_k,
Ort::Value n_layer_cross_v, Ort::Value offset) {
std::array<Ort::Value, 6> decoder_input = {std::move(tokens),
std::move(n_layer_self_k_cache),
std::move(n_layer_self_v_cache),
std::move(n_layer_cross_k),
std::move(n_layer_cross_v),
std::move(offset)};
auto decoder_out = decoder_sess_->Run(
{}, decoder_input_names_ptr_.data(), decoder_input.data(),
decoder_input.size(), decoder_output_names_ptr_.data(),
decoder_output_names_ptr_.size());
return {std::move(decoder_out[0]), std::move(decoder_out[1]),
std::move(decoder_out[2]), std::move(decoder_input[3]),
std::move(decoder_input[4]), std::move(decoder_input[5])};
}
std::pair<Ort::Value, Ort::Value> GetInitialSelfKVCache() {
std::array<int64_t, 4> shape{n_text_layer_, 1, n_text_ctx_, n_text_state_};
Ort::Value n_layer_self_k_cache = Ort::Value::CreateTensor<float>(
Allocator(), shape.data(), shape.size());
Ort::Value n_layer_self_v_cache = Ort::Value::CreateTensor<float>(
Allocator(), shape.data(), shape.size());
auto n = shape[0] * shape[1] * shape[2] * shape[3];
float *p_k = n_layer_self_k_cache.GetTensorMutableData<float>();
float *p_v = n_layer_self_v_cache.GetTensorMutableData<float>();
memset(p_k, 0, sizeof(float) * n);
memset(p_v, 0, sizeof(float) * n);
return {std::move(n_layer_self_k_cache), std::move(n_layer_self_v_cache)};
}
OrtAllocator *Allocator() const { return allocator_; }
const std::vector<int64_t> &GetInitialTokens() const { return sot_sequence_; }
int32_t EOT() const { return eot_; }
int32_t TextCtx() const { return n_text_ctx_; }
private:
void InitEncoder(void *model_data, size_t model_data_length) {
encoder_sess_ = std::make_unique<Ort::Session>(
env_, model_data, model_data_length, sess_opts_);
GetInputNames(encoder_sess_.get(), &encoder_input_names_,
&encoder_input_names_ptr_);
GetOutputNames(encoder_sess_.get(), &encoder_output_names_,
&encoder_output_names_ptr_);
// get meta data
Ort::ModelMetadata meta_data = encoder_sess_->GetModelMetadata();
if (config_.debug) {
std::ostringstream os;
os << "---encoder---\n";
PrintModelMetadata(os, meta_data);
SHERPA_ONNX_LOGE("%s\n", os.str().c_str());
}
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
SHERPA_ONNX_READ_META_DATA(n_text_layer_, "n_text_layer");
SHERPA_ONNX_READ_META_DATA(n_text_ctx_, "n_text_ctx");
SHERPA_ONNX_READ_META_DATA(n_text_state_, "n_text_state");
SHERPA_ONNX_READ_META_DATA(sot_, "sot");
SHERPA_ONNX_READ_META_DATA(eot_, "eot");
SHERPA_ONNX_READ_META_DATA(blank_, "blank_id");
SHERPA_ONNX_READ_META_DATA(translate_, "translate");
SHERPA_ONNX_READ_META_DATA(no_timestamps_, "no_timestamps");
SHERPA_ONNX_READ_META_DATA(no_speech_, "no_speech");
SHERPA_ONNX_READ_META_DATA_VEC(sot_sequence_, "sot_sequence");
}
void InitDecoder(void *model_data, size_t model_data_length) {
decoder_sess_ = std::make_unique<Ort::Session>(
env_, model_data, model_data_length, sess_opts_);
GetInputNames(decoder_sess_.get(), &decoder_input_names_,
&decoder_input_names_ptr_);
GetOutputNames(decoder_sess_.get(), &decoder_output_names_,
&decoder_output_names_ptr_);
}
private:
OfflineModelConfig config_;
Ort::Env env_;
Ort::SessionOptions sess_opts_;
Ort::AllocatorWithDefaultOptions allocator_;
std::unique_ptr<Ort::Session> encoder_sess_;
std::unique_ptr<Ort::Session> decoder_sess_;
std::vector<std::string> encoder_input_names_;
std::vector<const char *> encoder_input_names_ptr_;
std::vector<std::string> encoder_output_names_;
std::vector<const char *> encoder_output_names_ptr_;
std::vector<std::string> decoder_input_names_;
std::vector<const char *> decoder_input_names_ptr_;
std::vector<std::string> decoder_output_names_;
std::vector<const char *> decoder_output_names_ptr_;
// model meta data
int32_t n_text_layer_;
int32_t n_text_ctx_;
int32_t n_text_state_;
int32_t sot_;
int32_t eot_;
int32_t blank_;
int32_t translate_;
int32_t no_timestamps_;
int32_t no_speech_;
std::vector<int64_t> sot_sequence_;
};
OfflineWhisperModel::OfflineWhisperModel(const OfflineModelConfig &config)
: impl_(std::make_unique<Impl>(config)) {}
OfflineWhisperModel::~OfflineWhisperModel() = default;
std::pair<Ort::Value, Ort::Value> OfflineWhisperModel::ForwardEncoder(
Ort::Value features) {
return impl_->ForwardEncoder(std::move(features));
}
std::tuple<Ort::Value, Ort::Value, Ort::Value, Ort::Value, Ort::Value,
Ort::Value>
OfflineWhisperModel::ForwardDecoder(Ort::Value tokens,
Ort::Value n_layer_self_k_cache,
Ort::Value n_layer_self_v_cache,
Ort::Value n_layer_cross_k,
Ort::Value n_layer_cross_v,
Ort::Value offset) {
return impl_->ForwardDecoder(
std::move(tokens), std::move(n_layer_self_k_cache),
std::move(n_layer_self_v_cache), std::move(n_layer_cross_k),
std::move(n_layer_cross_v), std::move(offset));
}
std::pair<Ort::Value, Ort::Value> OfflineWhisperModel::GetInitialSelfKVCache() {
return impl_->GetInitialSelfKVCache();
}
OrtAllocator *OfflineWhisperModel::Allocator() const {
return impl_->Allocator();
}
const std::vector<int64_t> &OfflineWhisperModel::GetInitialTokens() const {
return impl_->GetInitialTokens();
}
int32_t OfflineWhisperModel::EOT() const { return impl_->EOT(); }
int32_t OfflineWhisperModel::TextCtx() const { return impl_->TextCtx(); }
} // namespace sherpa_onnx