export-onnx.py
13.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
# flake8: noqa
"""
Note: Code in this file is modified from
https://github.com/TadaoYamaoka/whisper/blob/main/to_onnx.py
Thanks to https://github.com/TadaoYamaoka
for making the onnx export script public.
"""
import argparse
from pathlib import Path
from typing import Any, Dict, Optional
import onnx
import torch
from onnxruntime.quantization import QuantType, quantize_dynamic
from torch import Tensor, nn
import whisper
from whisper.model import (
AudioEncoder,
MultiHeadAttention,
ResidualAttentionBlock,
TextDecoder,
)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model",
type=str,
required=True,
# fmt: off
choices=[
"tiny", "tiny.en", "base", "base.en",
"small", "small.en", "medium", "medium.en",
"large", "large-v1", "large-v2"],
# fmt: on
)
return parser.parse_args()
def add_meta_data(filename: str, meta_data: Dict[str, Any]):
"""Add meta data to an ONNX model. It is changed in-place.
Args:
filename:
Filename of the ONNX model to be changed.
meta_data:
Key-value pairs.
"""
model = onnx.load(filename)
for key, value in meta_data.items():
meta = model.metadata_props.add()
meta.key = key
meta.value = str(value)
onnx.save(model, filename)
class AudioEncoderTensorCache(nn.Module):
def __init__(self, inAudioEncoder: AudioEncoder, inTextDecoder: TextDecoder):
super().__init__()
self.audioEncoder = inAudioEncoder
self.textDecoder = inTextDecoder
def forward(self, x: Tensor):
audio_features = self.audioEncoder(x)
n_layer_cross_k_list = []
n_layer_cross_v_list = []
for block in self.textDecoder.blocks:
n_layer_cross_k_list.append(block.cross_attn.key(audio_features))
n_layer_cross_v_list.append(block.cross_attn.value(audio_features))
return torch.stack(n_layer_cross_k_list), torch.stack(n_layer_cross_v_list)
class MultiHeadAttentionCross(nn.Module):
def __init__(self, inMultiHeadAttention: MultiHeadAttention):
super().__init__()
self.multiHeadAttention = inMultiHeadAttention
def forward(
self,
x: Tensor,
k: Tensor,
v: Tensor,
mask: Optional[Tensor] = None,
):
q = self.multiHeadAttention.query(x)
wv, qk = self.multiHeadAttention.qkv_attention(q, k, v, mask)
return self.multiHeadAttention.out(wv)
class MultiHeadAttentionSelf(nn.Module):
def __init__(self, inMultiHeadAttention: MultiHeadAttention):
super().__init__()
self.multiHeadAttention = inMultiHeadAttention
def forward(
self,
x: Tensor, # (b, n_ctx , n_state)
k_cache: Tensor, # (b, n_ctx_cache, n_state)
v_cache: Tensor, # (b, n_ctx_cache, n_state)
mask: Tensor,
):
q = self.multiHeadAttention.query(x) # (b, n_ctx, n_state)
k = self.multiHeadAttention.key(x) # (b, n_ctx, n_state)
v = self.multiHeadAttention.value(x) # (b, n_ctx, n_state)
k_cache[:, -k.shape[1] :, :] = k # (b, n_ctx_cache + n_ctx, n_state)
v_cache[:, -v.shape[1] :, :] = v # (b, n_ctx_cache + n_ctx, n_state)
wv, qk = self.multiHeadAttention.qkv_attention(q, k_cache, v_cache, mask)
return self.multiHeadAttention.out(wv), k_cache, v_cache
class ResidualAttentionBlockTensorCache(nn.Module):
def __init__(self, inResidualAttentionBlock: ResidualAttentionBlock):
super().__init__()
self.originalBlock = inResidualAttentionBlock
self.attn = MultiHeadAttentionSelf(inResidualAttentionBlock.attn)
self.cross_attn = (
MultiHeadAttentionCross(inResidualAttentionBlock.cross_attn)
if inResidualAttentionBlock.cross_attn
else None
)
def forward(
self,
x: Tensor,
self_k_cache: Tensor,
self_v_cache: Tensor,
cross_k: Tensor,
cross_v: Tensor,
mask: Tensor,
):
self_attn_x, self_k_cache_updated, self_v_cache_updated = self.attn(
self.originalBlock.attn_ln(x), self_k_cache, self_v_cache, mask=mask
)
x = x + self_attn_x
if self.cross_attn:
x = x + self.cross_attn(
self.originalBlock.cross_attn_ln(x), cross_k, cross_v
)
x = x + self.originalBlock.mlp(self.originalBlock.mlp_ln(x))
return x, self_k_cache_updated, self_v_cache_updated
class TextDecoderTensorCache(nn.Module):
def __init__(self, inTextDecoder: TextDecoder, in_n_ctx: int):
super().__init__()
self.textDecoder = inTextDecoder
self.n_ctx = in_n_ctx
self.blocks = []
for orginal_block in self.textDecoder.blocks:
self.blocks.append(ResidualAttentionBlockTensorCache(orginal_block))
def forward(
self,
tokens: Tensor,
n_layer_self_k_cache: Tensor,
n_layer_self_v_cache: Tensor,
n_layer_cross_k: Tensor,
n_layer_cross_v: Tensor,
offset: Tensor,
):
x = (
self.textDecoder.token_embedding(tokens)
+ self.textDecoder.positional_embedding[
offset[0] : offset[0] + tokens.shape[-1]
]
)
x = x.to(n_layer_cross_k[0].dtype)
i = 0
for block in self.blocks:
self_k_cache = n_layer_self_k_cache[i, :, : offset[0] + tokens.shape[-1], :]
self_v_cache = n_layer_self_v_cache[i, :, : offset[0] + tokens.shape[-1], :]
x, self_k_cache, self_v_cache = block(
x,
self_k_cache=self_k_cache,
self_v_cache=self_v_cache,
cross_k=n_layer_cross_k[i],
cross_v=n_layer_cross_v[i],
mask=self.textDecoder.mask,
)
n_layer_self_k_cache[i, :, : offset[0] + tokens.shape[-1], :] = self_k_cache
n_layer_self_v_cache[i, :, : offset[0] + tokens.shape[-1], :] = self_v_cache
i += 1
x = self.textDecoder.ln(x)
logits = (
x
@ torch.transpose(self.textDecoder.token_embedding.weight.to(x.dtype), 0, 1)
).float()
return logits, n_layer_self_k_cache, n_layer_self_v_cache
# ref: https://github.com/ggerganov/whisper.cpp/blob/master/models/convert-pt-to-ggml.py#L232
def convert_tokens(name, model):
whisper_dir = Path(whisper.__file__).parent
multilingual = model.is_multilingual
tokenizer = (
whisper_dir
/ "assets"
/ (multilingual and "multilingual.tiktoken" or "gpt2.tiktoken")
)
if not tokenizer.is_file():
raise ValueError(f"Cannot find {tokenizer}")
# import base64
with open(tokenizer, "r") as f:
contents = f.read()
# tokens = {
# base64.b64decode(token): int(rank)
# for token, rank in (line.split() for line in contents.splitlines() if line)
# }
tokens = {
token: int(rank)
for token, rank in (line.split() for line in contents.splitlines() if line)
}
with open(f"{name}-tokens.txt", "w") as f:
for t, i in tokens.items():
f.write(f"{t} {i}\n")
@torch.no_grad()
def main():
args = get_args()
name = args.model
opset_version = 13
model = whisper.load_model(name)
convert_tokens(name=name, model=model)
# write tokens
tokenizer = whisper.tokenizer.get_tokenizer(model.is_multilingual)
model.eval()
print(model.dims)
audio = torch.rand(16000 * 2)
audio = whisper.pad_or_trim(audio)
assert audio.shape == (16000 * 30,), audio.shape
# make log-Mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(audio).to(model.device).unsqueeze(0)
batch_size = 1
assert mel.shape == (batch_size, 80, 30 * 100)
encoder = AudioEncoderTensorCache(model.encoder, model.decoder)
n_layer_cross_k, n_layer_cross_v = encoder(mel)
assert n_layer_cross_k.shape == (
model.dims.n_text_layer,
batch_size,
model.dims.n_audio_ctx,
model.dims.n_text_state,
), n_layer_cross_k.shape
assert n_layer_cross_v.shape == (
model.dims.n_text_layer,
batch_size,
model.dims.n_audio_ctx,
model.dims.n_text_state,
), n_layer_cross_v.shape
encoder_filename = f"{name}-encoder.onnx"
torch.onnx.export(
encoder,
mel,
encoder_filename,
opset_version=opset_version,
input_names=["mel"],
output_names=["n_layer_cross_k", "n_layer_cross_v"],
dynamic_axes={
"mel": {0: "n_audio"}, # n_audio is also known as batch_size
"n_layer_cross_k": {1: "n_audio"},
"n_layer_cross_v": {1: "n_audio"},
},
)
encoder_meta_data = {
"model_type": f"whisper-{name}",
"version": "1",
"maintainer": "k2-fsa",
"n_mels": model.dims.n_mels,
"n_audio_ctx": model.dims.n_audio_ctx,
"n_audio_state": model.dims.n_audio_state,
"n_audio_head": model.dims.n_audio_head,
"n_audio_layer": model.dims.n_audio_layer,
"n_vocab": model.dims.n_vocab,
"n_text_ctx": model.dims.n_text_ctx,
"n_text_state": model.dims.n_text_state,
"n_text_head": model.dims.n_text_head,
"n_text_layer": model.dims.n_text_layer,
"sot_sequence": ",".join(list(map(str, tokenizer.sot_sequence))),
"all_language_tokens": ",".join(list(map(str, tokenizer.all_language_tokens))),
"all_language_codes": ",".join(tokenizer.all_language_codes),
"sot": tokenizer.sot,
"sot_index": tokenizer.sot_sequence.index(tokenizer.sot),
"eot": tokenizer.eot,
"blank_id": tokenizer.encode(" ")[0],
"is_multilingual": int(model.is_multilingual),
"no_speech": tokenizer.no_speech,
"non_speech_tokens": ",".join(list(map(str, tokenizer.non_speech_tokens))),
"transcribe": tokenizer.transcribe,
"translate": tokenizer.translate,
"sot_prev": tokenizer.sot_prev,
"sot_lm": tokenizer.sot_lm,
"no_timestamps": tokenizer.no_timestamps,
}
print(f"encoder_meta_data: {encoder_meta_data}")
add_meta_data(filename=encoder_filename, meta_data=encoder_meta_data)
n_audio = mel.shape[0]
tokens = torch.tensor([[tokenizer.sot, tokenizer.sot, tokenizer.sot]] * n_audio).to(
mel.device
) # [n_audio, 3]
decoder = TextDecoderTensorCache(model.decoder, model.dims.n_text_ctx)
n_layer_self_k_cache = torch.zeros(
(
len(model.decoder.blocks),
n_audio,
model.dims.n_text_ctx,
model.dims.n_text_state,
),
device=mel.device,
)
n_layer_self_v_cache = torch.zeros(
(
len(model.decoder.blocks),
n_audio,
model.dims.n_text_ctx,
model.dims.n_text_state,
),
device=mel.device,
)
offset = torch.zeros(1, dtype=torch.int64).to(mel.device)
logits, n_layer_self_k_cache, n_layer_self_v_cache = decoder(
tokens,
n_layer_self_k_cache,
n_layer_self_v_cache,
n_layer_cross_k,
n_layer_cross_v,
offset,
)
assert logits.shape == (n_audio, tokens.shape[1], model.dims.n_vocab)
assert n_layer_self_k_cache.shape == (
model.dims.n_text_layer,
n_audio,
model.dims.n_text_ctx,
model.dims.n_text_state,
)
assert n_layer_self_v_cache.shape == (
model.dims.n_text_layer,
n_audio,
model.dims.n_text_ctx,
model.dims.n_text_state,
)
offset = torch.tensor([tokens.shape[1]], dtype=torch.int64).to(mel.device)
tokens = torch.tensor([[tokenizer.sot]] * n_audio).to(mel.device) # [n_audio, 1]
logits, out_n_layer_self_k_cache, out_n_layer_self_v_cache = decoder(
tokens,
n_layer_self_k_cache,
n_layer_self_v_cache,
n_layer_cross_k,
n_layer_cross_v,
offset,
)
decoder_filename = f"{name}-decoder.onnx"
torch.onnx.export(
decoder,
(
tokens,
n_layer_self_k_cache,
n_layer_self_v_cache,
n_layer_cross_k,
n_layer_cross_v,
offset,
),
decoder_filename,
opset_version=opset_version,
input_names=[
"tokens",
"in_n_layer_self_k_cache",
"in_n_layer_self_v_cache",
"n_layer_cross_k",
"n_layer_cross_v",
"offset",
],
output_names=["logits", "out_n_layer_self_k_cache", "out_n_layer_self_v_cache"],
dynamic_axes={
"tokens": {0: "n_audio", 1: "n_tokens"},
"in_n_layer_self_k_cache": {1: "n_audio"},
"in_n_layer_self_v_cache": {1: "n_audio"},
"n_layer_cross_k": {1: "n_audio"},
"n_layer_cross_v": {1: "n_audio"},
},
)
# Generate int8 quantization models
# See https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html#data-type-selection
print("Generate int8 quantization models")
encoder_filename_int8 = f"{name}-encoder.int8.onnx"
quantize_dynamic(
model_input=encoder_filename,
model_output=encoder_filename_int8,
op_types_to_quantize=["MatMul"],
weight_type=QuantType.QInt8,
)
decoder_filename_int8 = f"{name}-decoder.int8.onnx"
quantize_dynamic(
model_input=decoder_filename,
model_output=decoder_filename_int8,
op_types_to_quantize=["MatMul"],
weight_type=QuantType.QInt8,
)
if __name__ == "__main__":
main()