offline_recognizer.py 12.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
# Copyright (c)  2023 by manyeyes
# Copyright (c)  2023  Xiaomi Corporation
from pathlib import Path
from typing import List, Optional

from _sherpa_onnx import (
    OfflineCtcFstDecoderConfig,
    OfflineFeatureExtractorConfig,
    OfflineModelConfig,
    OfflineNemoEncDecCtcModelConfig,
    OfflineParaformerModelConfig,
    OfflineTdnnModelConfig,
    OfflineWhisperModelConfig,
    OfflineZipformerCtcModelConfig,
)
from _sherpa_onnx import OfflineRecognizer as _Recognizer
from _sherpa_onnx import (
    OfflineRecognizerConfig,
    OfflineStream,
    OfflineTransducerModelConfig,
)


def _assert_file_exists(f: str):
    assert Path(f).is_file(), f"{f} does not exist"


class OfflineRecognizer(object):
    """A class for offline speech recognition.

    Please refer to the following files for usages
     - https://github.com/k2-fsa/sherpa-onnx/blob/master/sherpa-onnx/python/tests/test_offline_recognizer.py
     - https://github.com/k2-fsa/sherpa-onnx/blob/master/python-api-examples/offline-decode-files.py
    """

    @classmethod
    def from_transducer(
        cls,
        encoder: str,
        decoder: str,
        joiner: str,
        tokens: str,
        num_threads: int = 1,
        sample_rate: int = 16000,
        feature_dim: int = 80,
        decoding_method: str = "greedy_search",
        max_active_paths: int = 4,
        hotwords_file: str = "",
        hotwords_score: float = 1.5,
        debug: bool = False,
        provider: str = "cpu",
    ):
        """
        Please refer to
        `<https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-transducer/index.html>`_
        to download pre-trained models for different languages, e.g., Chinese,
        English, etc.

        Args:
          tokens:
            Path to ``tokens.txt``. Each line in ``tokens.txt`` contains two
            columns::

                symbol integer_id

          encoder:
            Path to ``encoder.onnx``.
          decoder:
            Path to ``decoder.onnx``.
          joiner:
            Path to ``joiner.onnx``.
          num_threads:
            Number of threads for neural network computation.
          sample_rate:
            Sample rate of the training data used to train the model.
          feature_dim:
            Dimension of the feature used to train the model.
          decoding_method:
            Valid values: greedy_search, modified_beam_search.
          max_active_paths:
            Maximum number of active paths to keep. Used only when
            decoding_method is modified_beam_search.
          debug:
            True to show debug messages.
          provider:
            onnxruntime execution providers. Valid values are: cpu, cuda, coreml.
        """
        self = cls.__new__(cls)
        model_config = OfflineModelConfig(
            transducer=OfflineTransducerModelConfig(
                encoder_filename=encoder,
                decoder_filename=decoder,
                joiner_filename=joiner,
            ),
            tokens=tokens,
            num_threads=num_threads,
            debug=debug,
            provider=provider,
            model_type="transducer",
        )

        feat_config = OfflineFeatureExtractorConfig(
            sampling_rate=sample_rate,
            feature_dim=feature_dim,
        )

        if len(hotwords_file) > 0 and decoding_method != "modified_beam_search":
            raise ValueError(
                "Please use --decoding-method=modified_beam_search when using "
                f"--hotwords-file. Currently given: {decoding_method}"
            )

        recognizer_config = OfflineRecognizerConfig(
            feat_config=feat_config,
            model_config=model_config,
            decoding_method=decoding_method,
            hotwords_file=hotwords_file,
            hotwords_score=hotwords_score,
        )
        self.recognizer = _Recognizer(recognizer_config)
        self.config = recognizer_config
        return self

    @classmethod
    def from_paraformer(
        cls,
        paraformer: str,
        tokens: str,
        num_threads: int = 1,
        sample_rate: int = 16000,
        feature_dim: int = 80,
        decoding_method: str = "greedy_search",
        debug: bool = False,
        provider: str = "cpu",
    ):
        """
        Please refer to
        `<https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-paraformer/index.html>`_
        to download pre-trained models.

        Args:
          tokens:
            Path to ``tokens.txt``. Each line in ``tokens.txt`` contains two
            columns::

                symbol integer_id

          paraformer:
            Path to ``model.onnx``.
          num_threads:
            Number of threads for neural network computation.
          sample_rate:
            Sample rate of the training data used to train the model.
          feature_dim:
            Dimension of the feature used to train the model.
          decoding_method:
            Valid values are greedy_search.
          debug:
            True to show debug messages.
          provider:
            onnxruntime execution providers. Valid values are: cpu, cuda, coreml.
        """
        self = cls.__new__(cls)
        model_config = OfflineModelConfig(
            paraformer=OfflineParaformerModelConfig(model=paraformer),
            tokens=tokens,
            num_threads=num_threads,
            debug=debug,
            provider=provider,
            model_type="paraformer",
        )

        feat_config = OfflineFeatureExtractorConfig(
            sampling_rate=sample_rate,
            feature_dim=feature_dim,
        )

        recognizer_config = OfflineRecognizerConfig(
            feat_config=feat_config,
            model_config=model_config,
            decoding_method=decoding_method,
        )
        self.recognizer = _Recognizer(recognizer_config)
        self.config = recognizer_config
        return self

    @classmethod
    def from_nemo_ctc(
        cls,
        model: str,
        tokens: str,
        num_threads: int = 1,
        sample_rate: int = 16000,
        feature_dim: int = 80,
        decoding_method: str = "greedy_search",
        debug: bool = False,
        provider: str = "cpu",
    ):
        """
        Please refer to
        `<https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-ctc/nemo/index.html>`_
        to download pre-trained models for different languages, e.g., Chinese,
        English, etc.

        Args:
          model:
            Path to ``model.onnx``.
          tokens:
            Path to ``tokens.txt``. Each line in ``tokens.txt`` contains two
            columns::

                symbol integer_id

          num_threads:
            Number of threads for neural network computation.
          sample_rate:
            Sample rate of the training data used to train the model.
          feature_dim:
            Dimension of the feature used to train the model.
          decoding_method:
            Valid values are greedy_search.
          debug:
            True to show debug messages.
          provider:
            onnxruntime execution providers. Valid values are: cpu, cuda, coreml.
        """
        self = cls.__new__(cls)
        model_config = OfflineModelConfig(
            nemo_ctc=OfflineNemoEncDecCtcModelConfig(model=model),
            tokens=tokens,
            num_threads=num_threads,
            debug=debug,
            provider=provider,
            model_type="nemo_ctc",
        )

        feat_config = OfflineFeatureExtractorConfig(
            sampling_rate=sample_rate,
            feature_dim=feature_dim,
        )

        recognizer_config = OfflineRecognizerConfig(
            feat_config=feat_config,
            model_config=model_config,
            decoding_method=decoding_method,
        )
        self.recognizer = _Recognizer(recognizer_config)
        self.config = recognizer_config
        return self

    @classmethod
    def from_whisper(
        cls,
        encoder: str,
        decoder: str,
        tokens: str,
        language: str = "en",
        task: str = "transcribe",
        num_threads: int = 1,
        decoding_method: str = "greedy_search",
        debug: bool = False,
        provider: str = "cpu",
    ):
        """
        Please refer to
        `<https://k2-fsa.github.io/sherpa/onnx/pretrained_models/whisper/index.html>`_
        to download pre-trained models for different kinds of whisper models,
        e.g., tiny, tiny.en, base, base.en, etc.

        Args:
          encoder_model:
            Path to the encoder model, e.g., tiny-encoder.onnx,
            tiny-encoder.int8.onnx, tiny-encoder.ort, etc.
          decoder_model:
            Path to the encoder model, e.g., tiny-encoder.onnx,
            tiny-encoder.int8.onnx, tiny-encoder.ort, etc.
          tokens:
            Path to ``tokens.txt``. Each line in ``tokens.txt`` contains two
            columns::

                symbol integer_id

          language:
            The spoken language in the audio file. Example values: en, de, zh,
            jp, fr. See https://github.com/openai/whisper/blob/main/whisper/tokenizer.py#L10
            for all possible values. Note that for non-multilingual models, the
            only valid value is 'en'.
          task:
            Valid values are: transcribe, translate. Note that for
            non-multilingual models, the only valid value is 'transcribe'.
          num_threads:
            Number of threads for neural network computation.
          decoding_method:
            Valid values: greedy_search.
          debug:
            True to show debug messages.
          provider:
            onnxruntime execution providers. Valid values are: cpu, cuda, coreml.
        """
        self = cls.__new__(cls)
        model_config = OfflineModelConfig(
            whisper=OfflineWhisperModelConfig(
                encoder=encoder,
                decoder=decoder,
                language=language,
                task=task,
            ),
            tokens=tokens,
            num_threads=num_threads,
            debug=debug,
            provider=provider,
            model_type="whisper",
        )

        feat_config = OfflineFeatureExtractorConfig(
            sampling_rate=16000,
            feature_dim=80,
        )

        recognizer_config = OfflineRecognizerConfig(
            feat_config=feat_config,
            model_config=model_config,
            decoding_method=decoding_method,
        )
        self.recognizer = _Recognizer(recognizer_config)
        self.config = recognizer_config
        return self

    @classmethod
    def from_tdnn_ctc(
        cls,
        model: str,
        tokens: str,
        num_threads: int = 1,
        sample_rate: int = 8000,
        feature_dim: int = 23,
        decoding_method: str = "greedy_search",
        debug: bool = False,
        provider: str = "cpu",
    ):
        """
        Please refer to
        `<https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-ctc/yesno/index.html>`_
        to download pre-trained models.

        Args:
          model:
            Path to ``model.onnx``.
          tokens:
            Path to ``tokens.txt``. Each line in ``tokens.txt`` contains two
            columns::

                symbol integer_id

          num_threads:
            Number of threads for neural network computation.
          sample_rate:
            Sample rate of the training data used to train the model.
          feature_dim:
            Dimension of the feature used to train the model.
          decoding_method:
            Valid values are greedy_search.
          debug:
            True to show debug messages.
          provider:
            onnxruntime execution providers. Valid values are: cpu, cuda, coreml.
        """
        self = cls.__new__(cls)
        model_config = OfflineModelConfig(
            tdnn=OfflineTdnnModelConfig(model=model),
            tokens=tokens,
            num_threads=num_threads,
            debug=debug,
            provider=provider,
            model_type="tdnn",
        )

        feat_config = OfflineFeatureExtractorConfig(
            sampling_rate=sample_rate,
            feature_dim=feature_dim,
        )

        recognizer_config = OfflineRecognizerConfig(
            feat_config=feat_config,
            model_config=model_config,
            decoding_method=decoding_method,
        )
        self.recognizer = _Recognizer(recognizer_config)
        self.config = recognizer_config
        return self

    def create_stream(self, hotwords: Optional[str] = None):
        if hotwords is None:
            return self.recognizer.create_stream()
        else:
            return self.recognizer.create_stream(hotwords)

    def decode_stream(self, s: OfflineStream):
        self.recognizer.decode_stream(s)

    def decode_streams(self, ss: List[OfflineStream]):
        self.recognizer.decode_streams(ss)