online-transducer-greedy-search-nemo-decoder.cc
6.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// sherpa-onnx/csrc/online-transducer-greedy-search-nemo-decoder.cc
//
// Copyright (c) 2024 Xiaomi Corporation
// Copyright (c) 2024 Sangeet Sagar
#include "sherpa-onnx/csrc/online-transducer-greedy-search-nemo-decoder.h"
#include <algorithm>
#include <iterator>
#include <utility>
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
namespace sherpa_onnx {
static std::pair<Ort::Value, Ort::Value> BuildDecoderInput(
int32_t token, OrtAllocator *allocator) {
std::array<int64_t, 2> shape{1, 1};
Ort::Value decoder_input =
Ort::Value::CreateTensor<int32_t>(allocator, shape.data(), shape.size());
std::array<int64_t, 1> length_shape{1};
Ort::Value decoder_input_length = Ort::Value::CreateTensor<int32_t>(
allocator, length_shape.data(), length_shape.size());
int32_t *p = decoder_input.GetTensorMutableData<int32_t>();
int32_t *p_length = decoder_input_length.GetTensorMutableData<int32_t>();
p[0] = token;
p_length[0] = 1;
return {std::move(decoder_input), std::move(decoder_input_length)};
}
OnlineTransducerDecoderResult
OnlineTransducerGreedySearchNeMoDecoder::GetEmptyResult() const {
int32_t context_size = 8;
int32_t blank_id = 0; // always 0
OnlineTransducerDecoderResult r;
r.tokens.resize(context_size, -1);
r.tokens.back() = blank_id;
return r;
}
static void UpdateCachedDecoderOut(
OrtAllocator *allocator, const Ort::Value *decoder_out,
std::vector<OnlineTransducerDecoderResult> *result) {
std::vector<int64_t> shape =
decoder_out->GetTensorTypeAndShapeInfo().GetShape();
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::array<int64_t, 2> v_shape{1, shape[1]};
const float *src = decoder_out->GetTensorData<float>();
for (auto &r : *result) {
if (!r.decoder_out) {
r.decoder_out = Ort::Value::CreateTensor<float>(allocator, v_shape.data(),
v_shape.size());
}
float *dst = r.decoder_out.GetTensorMutableData<float>();
std::copy(src, src + shape[1], dst);
src += shape[1];
}
}
std::vector<Ort::Value> DecodeOne(
const float *encoder_out, int32_t num_rows, int32_t num_cols,
OnlineTransducerNeMoModel *model, float blank_penalty,
std::vector<Ort::Value>& decoder_states,
std::vector<OnlineTransducerDecoderResult> *result) {
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
// OnlineTransducerDecoderResult result;
int32_t vocab_size = model->VocabSize();
int32_t blank_id = vocab_size - 1;
auto &r = (*result)[0];
Ort::Value decoder_out{nullptr};
auto decoder_input_pair = BuildDecoderInput(blank_id, model->Allocator());
// decoder_input_pair[0]: decoder_input
// decoder_input_pair[1]: decoder_input_length (discarded)
// decoder_output_pair.second returns the next decoder state
std::pair<Ort::Value, std::vector<Ort::Value>> decoder_output_pair =
model->RunDecoder(std::move(decoder_input_pair.first),
std::move(decoder_states)); // here decoder_states = {len=0, cap=0}. But decoder_output_pair= {first, second: {len=2, cap=2}} // ATTN
std::array<int64_t, 3> encoder_shape{1, num_cols, 1};
decoder_states = std::move(decoder_output_pair.second);
// TODO: Inside this loop, I need to framewise decoding.
for (int32_t t = 0; t != num_rows; ++t) {
Ort::Value cur_encoder_out = Ort::Value::CreateTensor(
memory_info, const_cast<float *>(encoder_out) + t * num_cols, num_cols,
encoder_shape.data(), encoder_shape.size());
Ort::Value logit = model->RunJoiner(std::move(cur_encoder_out),
View(&decoder_output_pair.first));
float *p_logit = logit.GetTensorMutableData<float>();
if (blank_penalty > 0) {
p_logit[blank_id] -= blank_penalty;
}
auto y = static_cast<int32_t>(std::distance(
static_cast<const float *>(p_logit),
std::max_element(static_cast<const float *>(p_logit),
static_cast<const float *>(p_logit) + vocab_size)));
SHERPA_ONNX_LOGE("y=%d", y);
if (y != blank_id) {
r.tokens.push_back(y);
r.timestamps.push_back(t + r.frame_offset);
decoder_input_pair = BuildDecoderInput(y, model->Allocator());
// last decoder state becomes the current state for the first chunk
decoder_output_pair =
model->RunDecoder(std::move(decoder_input_pair.first),
std::move(decoder_states));
// Update the decoder states for the next chunk
decoder_states = std::move(decoder_output_pair.second);
}
}
decoder_out = std::move(decoder_output_pair.first);
// UpdateCachedDecoderOut(model->Allocator(), &decoder_out, result);
// Update frame_offset
for (auto &r : *result) {
r.frame_offset += num_rows;
}
return std::move(decoder_states);
}
std::vector<Ort::Value> OnlineTransducerGreedySearchNeMoDecoder::Decode(
Ort::Value encoder_out,
std::vector<Ort::Value> decoder_states,
std::vector<OnlineTransducerDecoderResult> *result,
OnlineStream ** /*ss = nullptr*/, int32_t /*n= 0*/) {
auto shape = encoder_out.GetTensorTypeAndShapeInfo().GetShape();
if (shape[0] != result->size()) {
SHERPA_ONNX_LOGE(
"Size mismatch! encoder_out.size(0) %d, result.size(0): %d",
static_cast<int32_t>(shape[0]),
static_cast<int32_t>(result->size()));
exit(-1);
}
int32_t batch_size = static_cast<int32_t>(shape[0]); // bs = 1
int32_t dim1 = static_cast<int32_t>(shape[1]); // 2
int32_t dim2 = static_cast<int32_t>(shape[2]); // 512
// Define and initialize encoder_out_length
Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
int64_t length_value = 1;
std::vector<int64_t> length_shape = {1};
Ort::Value encoder_out_length = Ort::Value::CreateTensor<int64_t>(
memory_info, &length_value, 1, length_shape.data(), length_shape.size()
);
const int64_t *p_length = encoder_out_length.GetTensorData<int64_t>();
const float *p = encoder_out.GetTensorData<float>();
// std::vector<OnlineTransducerDecoderResult> ans(batch_size);
for (int32_t i = 0; i != batch_size; ++i) {
const float *this_p = p + dim1 * dim2 * i;
int32_t this_len = p_length[i];
// outputs the decoder state from last chunk.
auto last_decoder_states = DecodeOne(this_p, this_len, dim2, model_, blank_penalty_, decoder_states, result);
// ans[i] = decode_result_pair.first;
decoder_states = std::move(last_decoder_states);
}
return decoder_states;
}
} // namespace sherpa_onnx