sherpa-onnx-vad-with-offline-asr.cc
8.0 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
// sherpa-onnx/csrc/sherpa-onnx-vad-with-offline-asr.cc
//
// Copyright (c) 2025 Xiaomi Corporation
#include <stdio.h>
#include <chrono> // NOLINT
#include <string>
#include <vector>
#include "sherpa-onnx/csrc/offline-recognizer.h"
#include "sherpa-onnx/csrc/parse-options.h"
#include "sherpa-onnx/csrc/resample.h"
#include "sherpa-onnx/csrc/voice-activity-detector.h"
#include "sherpa-onnx/csrc/wave-reader.h"
int main(int32_t argc, char *argv[]) {
const char *kUsageMessage = R"usage(
Speech recognition using VAD + non-streaming models with sherpa-onnx.
Usage:
Note you can download silero_vad.onnx using
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
(0) FireRedAsr
See https://k2-fsa.github.io/sherpa/onnx/FireRedAsr/pretrained.html
./bin/sherpa-onnx-vad-with-offline-asr \
--tokens=./sherpa-onnx-fire-red-asr-large-zh_en-2025-02-16/tokens.txt \
--fire-red-asr-encoder=./sherpa-onnx-fire-red-asr-large-zh_en-2025-02-16/encoder.int8.onnx \
--fire-red-asr-decoder=./sherpa-onnx-fire-red-asr-large-zh_en-2025-02-16/decoder.int8.onnx \
--num-threads=1 \
--silero-vad-model=/path/to/silero_vad.onnx \
/path/to/foo.wav
(1) Transducer from icefall
See https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-transducer/index.html
./bin/sherpa-onnx-vad-with-offline-asr \
--silero-vad-model=/path/to/silero_vad.onnx \
--tokens=/path/to/tokens.txt \
--encoder=/path/to/encoder.onnx \
--decoder=/path/to/decoder.onnx \
--joiner=/path/to/joiner.onnx \
--num-threads=1 \
--decoding-method=greedy_search \
/path/to/foo.wav
(2) Paraformer from FunASR
See https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-paraformer/index.html
./bin/sherpa-onnx-vad-with-offline-asr \
--silero-vad-model=/path/to/silero_vad.onnx \
--tokens=/path/to/tokens.txt \
--paraformer=/path/to/model.onnx \
--num-threads=1 \
--decoding-method=greedy_search \
/path/to/foo.wav
(3) Moonshine models
See https://k2-fsa.github.io/sherpa/onnx/moonshine/index.html
./bin/sherpa-onnx-vad-with-offline-asr \
--silero-vad-model=/path/to/silero_vad.onnx \
--moonshine-preprocessor=/Users/fangjun/open-source/sherpa-onnx/scripts/moonshine/preprocess.onnx \
--moonshine-encoder=/Users/fangjun/open-source/sherpa-onnx/scripts/moonshine/encode.int8.onnx \
--moonshine-uncached-decoder=/Users/fangjun/open-source/sherpa-onnx/scripts/moonshine/uncached_decode.int8.onnx \
--moonshine-cached-decoder=/Users/fangjun/open-source/sherpa-onnx/scripts/moonshine/cached_decode.int8.onnx \
--tokens=/Users/fangjun/open-source/sherpa-onnx/scripts/moonshine/tokens.txt \
--num-threads=1 \
/path/to/foo.wav
(4) Whisper models
See https://k2-fsa.github.io/sherpa/onnx/pretrained_models/whisper/tiny.en.html
./bin/sherpa-onnx-vad-with-offline-asr \
--silero-vad-model=/path/to/silero_vad.onnx \
--whisper-encoder=./sherpa-onnx-whisper-base.en/base.en-encoder.int8.onnx \
--whisper-decoder=./sherpa-onnx-whisper-base.en/base.en-decoder.int8.onnx \
--tokens=./sherpa-onnx-whisper-base.en/base.en-tokens.txt \
--num-threads=1 \
/path/to/foo.wav
(5) NeMo CTC models
See https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-ctc/index.html
./bin/sherpa-onnx-vad-with-offline-asr \
--silero-vad-model=/path/to/silero_vad.onnx \
--tokens=./sherpa-onnx-nemo-ctc-en-conformer-medium/tokens.txt \
--nemo-ctc-model=./sherpa-onnx-nemo-ctc-en-conformer-medium/model.onnx \
--num-threads=2 \
--decoding-method=greedy_search \
--debug=false \
./sherpa-onnx-nemo-ctc-en-conformer-medium/test_wavs/0.wav
(6) TDNN CTC model for the yesno recipe from icefall
See https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-ctc/yesno/index.html
./bin/sherpa-onnx-vad-with-offline-asr \
--silero-vad-model=/path/to/silero_vad.onnx \
--sample-rate=8000 \
--feat-dim=23 \
--tokens=./sherpa-onnx-tdnn-yesno/tokens.txt \
--tdnn-model=./sherpa-onnx-tdnn-yesno/model-epoch-14-avg-2.onnx \
./sherpa-onnx-tdnn-yesno/test_wavs/0_0_0_1_0_0_0_1.wav
The input wav should be of single channel, 16-bit PCM encoded wave file; its
sampling rate can be arbitrary and does not need to be 16kHz.
Please refer to
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
for a list of pre-trained models to download.
)usage";
sherpa_onnx::ParseOptions po(kUsageMessage);
sherpa_onnx::OfflineRecognizerConfig asr_config;
asr_config.Register(&po);
sherpa_onnx::VadModelConfig vad_config;
vad_config.Register(&po);
po.Read(argc, argv);
if (po.NumArgs() != 1) {
fprintf(stderr, "Error: Please provide at only 1 wave file. Given: %d\n\n",
po.NumArgs());
po.PrintUsage();
exit(EXIT_FAILURE);
}
fprintf(stderr, "%s\n", vad_config.ToString().c_str());
fprintf(stderr, "%s\n", asr_config.ToString().c_str());
if (!vad_config.Validate()) {
fprintf(stderr, "Errors in vad_config!\n");
return -1;
}
if (!asr_config.Validate()) {
fprintf(stderr, "Errors in ASR config!\n");
return -1;
}
fprintf(stderr, "Creating recognizer ...\n");
sherpa_onnx::OfflineRecognizer recognizer(asr_config);
fprintf(stderr, "Recognizer created!\n");
auto vad = std::make_unique<sherpa_onnx::VoiceActivityDetector>(vad_config);
fprintf(stderr, "Started\n");
const auto begin = std::chrono::steady_clock::now();
std::string wave_filename = po.GetArg(1);
fprintf(stderr, "Reading: %s\n", wave_filename.c_str());
int32_t sampling_rate = -1;
bool is_ok = false;
auto samples = sherpa_onnx::ReadWave(wave_filename, &sampling_rate, &is_ok);
if (!is_ok) {
fprintf(stderr, "Failed to read '%s'\n", wave_filename.c_str());
return -1;
}
if (sampling_rate != 16000) {
fprintf(stderr, "Resampling from %d Hz to 16000 Hz", sampling_rate);
float min_freq = std::min<int32_t>(sampling_rate, 16000);
float lowpass_cutoff = 0.99 * 0.5 * min_freq;
int32_t lowpass_filter_width = 6;
auto resampler = std::make_unique<sherpa_onnx::LinearResample>(
sampling_rate, 16000, lowpass_cutoff, lowpass_filter_width);
std::vector<float> out_samples;
resampler->Resample(samples.data(), samples.size(), true, &out_samples);
samples = std::move(out_samples);
fprintf(stderr, "Resampling done\n");
}
fprintf(stderr, "Started!\n");
int32_t window_size = vad_config.silero_vad.window_size;
int32_t i = 0;
while (i + window_size < samples.size()) {
vad->AcceptWaveform(samples.data() + i, window_size);
i += window_size;
if (i >= samples.size()) {
vad->Flush();
}
while (!vad->Empty()) {
const auto &segment = vad->Front();
float duration = segment.samples.size() / 16000.;
float start_time = segment.start / 16000.;
float end_time = start_time + duration;
if (duration < 0.1) {
vad->Pop();
continue;
}
auto s = recognizer.CreateStream();
s->AcceptWaveform(16000, segment.samples.data(), segment.samples.size());
recognizer.DecodeStream(s.get());
const auto &result = s->GetResult();
if (!result.text.empty()) {
fprintf(stderr, "%.3f -- %.3f: %s\n", start_time, end_time,
result.text.c_str());
}
vad->Pop();
}
}
const auto end = std::chrono::steady_clock::now();
float elapsed_seconds =
std::chrono::duration_cast<std::chrono::milliseconds>(end - begin)
.count() /
1000.;
fprintf(stderr, "num threads: %d\n", asr_config.model_config.num_threads);
fprintf(stderr, "decoding method: %s\n", asr_config.decoding_method.c_str());
if (asr_config.decoding_method == "modified_beam_search") {
fprintf(stderr, "max active paths: %d\n", asr_config.max_active_paths);
}
float duration = samples.size() / 16000.;
fprintf(stderr, "Elapsed seconds: %.3f s\n", elapsed_seconds);
float rtf = elapsed_seconds / duration;
fprintf(stderr, "Real time factor (RTF): %.3f / %.3f = %.3f\n",
elapsed_seconds, duration, rtf);
return 0;
}