streaming-paraformer-asr-microphone.py
3.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#!/usr/bin/env python3
# Real-time speech recognition from a microphone with sherpa-onnx Python API
# with endpoint detection.
# This script uses a streaming paraformer
#
# Please refer to
# https://k2-fsa.github.io/sherpa/onnx/pretrained_models/online-paraformer/paraformer-models.html#
# to download pre-trained models
import sys
from pathlib import Path
try:
import sounddevice as sd
except ImportError:
print("Please install sounddevice first. You can use")
print()
print(" pip install sounddevice")
print()
print("to install it")
sys.exit(-1)
import sherpa_onnx
def assert_file_exists(filename: str):
assert Path(filename).is_file(), (
f"{filename} does not exist!\n"
"Please refer to "
"https://k2-fsa.github.io/sherpa/onnx/pretrained_models/online-paraformer/paraformer-models.html to download it"
)
def create_recognizer():
encoder = "./sherpa-onnx-streaming-paraformer-bilingual-zh-en/encoder.int8.onnx"
decoder = "./sherpa-onnx-streaming-paraformer-bilingual-zh-en/decoder.int8.onnx"
tokens = "./sherpa-onnx-streaming-paraformer-bilingual-zh-en/tokens.txt"
assert_file_exists(encoder)
assert_file_exists(decoder)
assert_file_exists(tokens)
recognizer = sherpa_onnx.OnlineRecognizer.from_paraformer(
tokens=tokens,
encoder=encoder,
decoder=decoder,
num_threads=1,
sample_rate=16000,
feature_dim=80,
enable_endpoint_detection=True,
rule1_min_trailing_silence=2.4,
rule2_min_trailing_silence=1.2,
rule3_min_utterance_length=300, # it essentially disables this rule
)
return recognizer
def main():
devices = sd.query_devices()
if len(devices) == 0:
print("No microphone devices found")
sys.exit(0)
print(devices)
default_input_device_idx = sd.default.device[0]
print(f'Use default device: {devices[default_input_device_idx]["name"]}')
recognizer = create_recognizer()
print("Started! Please speak")
# The model is using 16 kHz, we use 48 kHz here to demonstrate that
# sherpa-onnx will do resampling inside.
sample_rate = 48000
samples_per_read = int(0.1 * sample_rate) # 0.1 second = 100 ms
stream = recognizer.create_stream()
last_result = ""
segment_id = 0
with sd.InputStream(channels=1, dtype="float32", samplerate=sample_rate) as s:
while True:
samples, _ = s.read(samples_per_read) # a blocking read
samples = samples.reshape(-1)
stream.accept_waveform(sample_rate, samples)
while recognizer.is_ready(stream):
recognizer.decode_stream(stream)
is_endpoint = recognizer.is_endpoint(stream)
result = recognizer.get_result(stream)
if result and (last_result != result):
last_result = result
print("\r{}:{}".format(segment_id, result), end="", flush=True)
if is_endpoint:
if result:
print("\r{}:{}".format(segment_id, result), flush=True)
segment_id += 1
recognizer.reset(stream)
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
print("\nCaught Ctrl + C. Exiting")