online-recognizer-transducer-nemo-impl.h
8.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
// sherpa-onnx/csrc/online-recognizer-transducer-nemo-impl.h
//
// Copyright (c) 2022-2024 Xiaomi Corporation
// Copyright (c) 2024 Sangeet Sagar
#ifndef SHERPA_ONNX_CSRC_ONLINE_RECOGNIZER_TRANSDUCER_NEMO_IMPL_H_
#define SHERPA_ONNX_CSRC_ONLINE_RECOGNIZER_TRANSDUCER_NEMO_IMPL_H_
#include <algorithm>
#include <fstream>
#include <ios>
#include <memory>
#include <regex> // NOLINT
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#if __ANDROID_API__ >= 9
#include "android/asset_manager.h"
#include "android/asset_manager_jni.h"
#endif
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/online-recognizer-impl.h"
#include "sherpa-onnx/csrc/online-recognizer.h"
#include "sherpa-onnx/csrc/online-transducer-greedy-search-nemo-decoder.h"
#include "sherpa-onnx/csrc/online-transducer-nemo-model.h"
#include "sherpa-onnx/csrc/symbol-table.h"
#include "sherpa-onnx/csrc/transpose.h"
#include "sherpa-onnx/csrc/utils.h"
namespace sherpa_onnx {
// defined in ./online-recognizer-transducer-impl.h
OnlineRecognizerResult Convert(const OnlineTransducerDecoderResult &src,
const SymbolTable &sym_table,
float frame_shift_ms, int32_t subsampling_factor,
int32_t segment, int32_t frames_since_start);
class OnlineRecognizerTransducerNeMoImpl : public OnlineRecognizerImpl {
public:
explicit OnlineRecognizerTransducerNeMoImpl(
const OnlineRecognizerConfig &config)
: OnlineRecognizerImpl(config),
config_(config),
symbol_table_(config.model_config.tokens),
endpoint_(config_.endpoint_config),
model_(
std::make_unique<OnlineTransducerNeMoModel>(config.model_config)) {
if (config.decoding_method == "greedy_search") {
decoder_ = std::make_unique<OnlineTransducerGreedySearchNeMoDecoder>(
model_.get(), config_.blank_penalty);
} else {
SHERPA_ONNX_LOGE("Unsupported decoding method: %s",
config.decoding_method.c_str());
exit(-1);
}
PostInit();
}
#if __ANDROID_API__ >= 9
explicit OnlineRecognizerTransducerNeMoImpl(
AAssetManager *mgr, const OnlineRecognizerConfig &config)
: OnlineRecognizerImpl(mgr, config),
config_(config),
symbol_table_(mgr, config.model_config.tokens),
endpoint_(config_.endpoint_config),
model_(std::make_unique<OnlineTransducerNeMoModel>(
mgr, config.model_config)) {
if (config.decoding_method == "greedy_search") {
decoder_ = std::make_unique<OnlineTransducerGreedySearchNeMoDecoder>(
model_.get(), config_.blank_penalty);
} else {
SHERPA_ONNX_LOGE("Unsupported decoding method: %s",
config.decoding_method.c_str());
exit(-1);
}
PostInit();
}
#endif
std::unique_ptr<OnlineStream> CreateStream() const override {
auto stream = std::make_unique<OnlineStream>(config_.feat_config);
InitOnlineStream(stream.get());
return stream;
}
bool IsReady(OnlineStream *s) const override {
return s->GetNumProcessedFrames() + model_->ChunkSize() <
s->NumFramesReady();
}
OnlineRecognizerResult GetResult(OnlineStream *s) const override {
// TODO(fangjun): Remember to change these constants if needed
int32_t frame_shift_ms = 10;
int32_t subsampling_factor = model_->SubsamplingFactor();
auto r = Convert(s->GetResult(), symbol_table_, frame_shift_ms,
subsampling_factor, s->GetCurrentSegment(),
s->GetNumFramesSinceStart());
r.text = ApplyInverseTextNormalization(std::move(r.text));
return r;
}
bool IsEndpoint(OnlineStream *s) const override {
if (!config_.enable_endpoint) {
return false;
}
int32_t num_processed_frames = s->GetNumProcessedFrames();
// frame shift is 10 milliseconds
float frame_shift_in_seconds = 0.01;
int32_t trailing_silence_frames =
s->GetResult().num_trailing_blanks * model_->SubsamplingFactor();
return endpoint_.IsEndpoint(num_processed_frames, trailing_silence_frames,
frame_shift_in_seconds);
}
void Reset(OnlineStream *s) const override {
{
// segment is incremented only when the last
// result is not empty
const auto &r = s->GetResult();
if (!r.tokens.empty()) {
s->GetCurrentSegment() += 1;
}
}
s->SetResult({});
s->SetStates(model_->GetEncoderInitStates());
s->SetNeMoDecoderStates(model_->GetDecoderInitStates());
// Note: We only update counters. The underlying audio samples
// are not discarded.
s->Reset();
}
void DecodeStreams(OnlineStream **ss, int32_t n) const override {
int32_t chunk_size = model_->ChunkSize();
int32_t chunk_shift = model_->ChunkShift();
int32_t feature_dim = ss[0]->FeatureDim();
std::vector<float> features_vec(n * chunk_size * feature_dim);
std::vector<std::vector<Ort::Value>> encoder_states(n);
for (int32_t i = 0; i != n; ++i) {
const auto num_processed_frames = ss[i]->GetNumProcessedFrames();
std::vector<float> features =
ss[i]->GetFrames(num_processed_frames, chunk_size);
// Question: should num_processed_frames include chunk_shift?
ss[i]->GetNumProcessedFrames() += chunk_shift;
std::copy(features.begin(), features.end(),
features_vec.data() + i * chunk_size * feature_dim);
encoder_states[i] = std::move(ss[i]->GetStates());
}
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::array<int64_t, 3> x_shape{n, chunk_size, feature_dim};
Ort::Value x = Ort::Value::CreateTensor(memory_info, features_vec.data(),
features_vec.size(), x_shape.data(),
x_shape.size());
auto states = model_->StackStates(std::move(encoder_states));
int32_t num_states = states.size(); // num_states = 3
auto t = model_->RunEncoder(std::move(x), std::move(states));
// t[0] encoder_out, float tensor, (batch_size, dim, T)
// t[1] next states
std::vector<Ort::Value> out_states;
out_states.reserve(num_states);
for (int32_t k = 1; k != num_states + 1; ++k) {
out_states.push_back(std::move(t[k]));
}
auto unstacked_states = model_->UnStackStates(std::move(out_states));
for (int32_t i = 0; i != n; ++i) {
ss[i]->SetStates(std::move(unstacked_states[i]));
}
Ort::Value encoder_out = Transpose12(model_->Allocator(), &t[0]);
decoder_->Decode(std::move(encoder_out), ss, n);
}
void InitOnlineStream(OnlineStream *stream) const {
// set encoder states
stream->SetStates(model_->GetEncoderInitStates());
// set decoder states
stream->SetNeMoDecoderStates(model_->GetDecoderInitStates());
}
private:
void PostInit() {
config_.feat_config.nemo_normalize_type =
model_->FeatureNormalizationMethod();
config_.feat_config.low_freq = 0;
// config_.feat_config.high_freq = 8000;
config_.feat_config.is_librosa = true;
config_.feat_config.remove_dc_offset = false;
// config_.feat_config.window_type = "hann";
config_.feat_config.dither = 0;
config_.feat_config.nemo_normalize_type =
model_->FeatureNormalizationMethod();
int32_t vocab_size = model_->VocabSize();
// check the blank ID
if (!symbol_table_.Contains("<blk>")) {
SHERPA_ONNX_LOGE("tokens.txt does not include the blank token <blk>");
exit(-1);
}
if (symbol_table_["<blk>"] != vocab_size - 1) {
SHERPA_ONNX_LOGE("<blk> is not the last token!");
exit(-1);
}
if (symbol_table_.NumSymbols() != vocab_size) {
SHERPA_ONNX_LOGE("number of lines in tokens.txt %d != %d (vocab_size)",
symbol_table_.NumSymbols(), vocab_size);
exit(-1);
}
}
private:
OnlineRecognizerConfig config_;
SymbolTable symbol_table_;
std::unique_ptr<OnlineTransducerNeMoModel> model_;
std::unique_ptr<OnlineTransducerGreedySearchNeMoDecoder> decoder_;
Endpoint endpoint_;
};
} // namespace sherpa_onnx
#endif // SHERPA_ONNX_CSRC_ONLINE_RECOGNIZER_TRANSDUCER_NEMO_IMPL_H_