offline-tts-zipvoice-impl.h
11.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
// sherpa-onnx/csrc/offline-tts-zipvoice-impl.h
//
// Copyright (c) 2025 Xiaomi Corporation
#ifndef SHERPA_ONNX_CSRC_OFFLINE_TTS_ZIPVOICE_IMPL_H_
#define SHERPA_ONNX_CSRC_OFFLINE_TTS_ZIPVOICE_IMPL_H_
#include <algorithm>
#include <cmath>
#include <memory>
#include <string>
#include <strstream>
#include <utility>
#include <vector>
#include "kaldi-native-fbank/csrc/mel-computations.h"
#include "kaldi-native-fbank/csrc/stft.h"
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/offline-tts-frontend.h"
#include "sherpa-onnx/csrc/offline-tts-impl.h"
#include "sherpa-onnx/csrc/offline-tts-zipvoice-frontend.h"
#include "sherpa-onnx/csrc/offline-tts-zipvoice-model-config.h"
#include "sherpa-onnx/csrc/offline-tts-zipvoice-model.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
#include "sherpa-onnx/csrc/resample.h"
#include "sherpa-onnx/csrc/vocoder.h"
namespace sherpa_onnx {
class OfflineTtsZipvoiceImpl : public OfflineTtsImpl {
public:
explicit OfflineTtsZipvoiceImpl(const OfflineTtsConfig &config)
: config_(config),
model_(std::make_unique<OfflineTtsZipvoiceModel>(config.model)),
vocoder_(Vocoder::Create(config.model)) {
InitFrontend();
}
template <typename Manager>
OfflineTtsZipvoiceImpl(Manager *mgr, const OfflineTtsConfig &config)
: config_(config),
model_(std::make_unique<OfflineTtsZipvoiceModel>(mgr, config.model)),
vocoder_(Vocoder::Create(mgr, config.model)) {
InitFrontend(mgr);
}
int32_t SampleRate() const override {
return model_->GetMetaData().sample_rate;
}
GeneratedAudio Generate(
const std::string &text, const std::string &prompt_text,
const std::vector<float> &prompt_samples, int32_t sample_rate,
float speed, int32_t num_steps,
GeneratedAudioCallback callback = nullptr) const override {
std::vector<TokenIDs> text_token_ids =
frontend_->ConvertTextToTokenIds(text);
std::vector<TokenIDs> prompt_token_ids =
frontend_->ConvertTextToTokenIds(prompt_text);
if (text_token_ids.empty() ||
(text_token_ids.size() == 1 && text_token_ids[0].tokens.empty())) {
#if __OHOS__
SHERPA_ONNX_LOGE("Failed to convert '%{public}s' to token IDs",
text.c_str());
#else
SHERPA_ONNX_LOGE("Failed to convert '%s' to token IDs", text.c_str());
#endif
return {};
}
if (prompt_token_ids.empty() ||
(prompt_token_ids.size() == 1 && prompt_token_ids[0].tokens.empty())) {
#if __OHOS__
SHERPA_ONNX_LOGE(
"Failed to convert prompt text '%{public}s' to token IDs",
prompt_text.c_str());
#else
SHERPA_ONNX_LOGE("Failed to convert prompt text '%s' to token IDs",
prompt_text.c_str());
#endif
return {};
}
// we assume batch size is 1
std::vector<int64_t> tokens = text_token_ids[0].tokens;
std::vector<int64_t> prompt_tokens = prompt_token_ids[0].tokens;
return Process(tokens, prompt_tokens, prompt_samples, sample_rate, speed,
num_steps);
}
private:
template <typename Manager>
void InitFrontend(Manager *mgr) {
const auto &meta_data = model_->GetMetaData();
frontend_ = std::make_unique<OfflineTtsZipvoiceFrontend>(
mgr, config_.model.zipvoice.tokens, config_.model.zipvoice.data_dir,
config_.model.zipvoice.pinyin_dict, meta_data, config_.model.debug);
}
void InitFrontend() {
const auto &meta_data = model_->GetMetaData();
if (meta_data.use_pinyin && config_.model.zipvoice.pinyin_dict.empty()) {
SHERPA_ONNX_LOGE(
"Please provide --zipvoice-pinyin-dict for converting Chinese into "
"pinyin.");
exit(-1);
}
if (meta_data.use_espeak && config_.model.zipvoice.data_dir.empty()) {
SHERPA_ONNX_LOGE("Please provide --zipvoice-data-dir for espeak-ng.");
exit(-1);
}
frontend_ = std::make_unique<OfflineTtsZipvoiceFrontend>(
config_.model.zipvoice.tokens, config_.model.zipvoice.data_dir,
config_.model.zipvoice.pinyin_dict, meta_data, config_.model.debug);
}
std::vector<int32_t> ComputeMelSpectrogram(
const std::vector<float> &_samples, int32_t sample_rate,
std::vector<float> *prompt_features) const {
const auto &meta = model_->GetMetaData();
if (sample_rate != meta.sample_rate) {
SHERPA_ONNX_LOGE(
"Creating a resampler:\n"
" in_sample_rate: %d\n"
" output_sample_rate: %d\n",
sample_rate, static_cast<int32_t>(meta.sample_rate));
float min_freq = std::min<int32_t>(sample_rate, meta.sample_rate);
float lowpass_cutoff = 0.99 * 0.5 * min_freq;
int32_t lowpass_filter_width = 6;
auto resampler = std::make_unique<LinearResample>(
sample_rate, meta.sample_rate, lowpass_cutoff, lowpass_filter_width);
std::vector<float> samples;
resampler->Resample(_samples.data(), _samples.size(), true, &samples);
return ComputeMelSpectrogram(samples, prompt_features);
} else {
// Use the original samples if the sample rate matches
return ComputeMelSpectrogram(_samples, prompt_features);
}
}
std::vector<int32_t> ComputeMelSpectrogram(
const std::vector<float> &samples,
std::vector<float> *prompt_features) const {
const auto &meta = model_->GetMetaData();
int32_t sample_rate = meta.sample_rate;
int32_t n_fft = meta.n_fft;
int32_t hop_length = meta.hop_length;
int32_t win_length = meta.window_length;
int32_t num_mels = meta.num_mels;
knf::StftConfig stft_config;
stft_config.n_fft = n_fft;
stft_config.hop_length = hop_length;
stft_config.win_length = win_length;
stft_config.window_type = "hann";
stft_config.center = true;
knf::Stft stft(stft_config);
auto stft_result = stft.Compute(samples.data(), samples.size());
int32_t num_frames = stft_result.num_frames;
int32_t fft_bins = n_fft / 2 + 1;
knf::FrameExtractionOptions frame_opts;
frame_opts.samp_freq = sample_rate;
frame_opts.frame_length_ms = win_length * 1000 / sample_rate;
frame_opts.frame_shift_ms = hop_length * 1000 / sample_rate;
frame_opts.window_type = "hanning";
knf::MelBanksOptions mel_opts;
mel_opts.num_bins = num_mels;
mel_opts.low_freq = 0;
mel_opts.high_freq = sample_rate / 2;
mel_opts.is_librosa = true;
mel_opts.use_slaney_mel_scale = false;
mel_opts.norm = "";
knf::MelBanks mel_banks(mel_opts, frame_opts, 1.0f);
prompt_features->clear();
prompt_features->reserve(num_frames * num_mels);
for (int32_t i = 0; i < num_frames; ++i) {
std::vector<float> magnitude_spectrum(fft_bins);
for (int32_t k = 0; k < fft_bins; ++k) {
float real = stft_result.real[i * fft_bins + k];
float imag = stft_result.imag[i * fft_bins + k];
magnitude_spectrum[k] = std::sqrt(real * real + imag * imag);
}
std::vector<float> mel_features(num_mels, 0.0f);
mel_banks.Compute(magnitude_spectrum.data(), mel_features.data());
for (auto &v : mel_features) {
v = std::log(v + 1e-10f);
}
// Instead of push_back a vector, push elements individually
prompt_features->insert(prompt_features->end(), mel_features.begin(),
mel_features.end());
}
if (num_frames == 0) {
SHERPA_ONNX_LOGE("No frames extracted from the prompt audio");
return {0, 0};
} else {
return {num_frames, num_mels};
}
}
GeneratedAudio Process(const std::vector<int64_t> &tokens,
const std::vector<int64_t> &prompt_tokens,
const std::vector<float> &prompt_samples,
int32_t sample_rate, float speed,
int num_steps) const {
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::array<int64_t, 2> tokens_shape = {1,
static_cast<int64_t>(tokens.size())};
Ort::Value tokens_tensor = Ort::Value::CreateTensor(
memory_info, const_cast<int64_t *>(tokens.data()), tokens.size(),
tokens_shape.data(), tokens_shape.size());
std::array<int64_t, 2> prompt_tokens_shape = {
1, static_cast<int64_t>(prompt_tokens.size())};
Ort::Value prompt_tokens_tensor = Ort::Value::CreateTensor(
memory_info, const_cast<int64_t *>(prompt_tokens.data()),
prompt_tokens.size(), prompt_tokens_shape.data(),
prompt_tokens_shape.size());
float target_rms = config_.model.zipvoice.target_rms;
float feat_scale = config_.model.zipvoice.feat_scale;
// Scale prompt_samples
std::vector<float> prompt_samples_scaled = prompt_samples;
float prompt_rms = 0.0f;
double sum_sq = 0.0;
// Compute RMS of prompt_samples
for (float s : prompt_samples_scaled) {
sum_sq += s * s;
}
prompt_rms = std::sqrt(sum_sq / prompt_samples_scaled.size());
if (prompt_rms < target_rms && prompt_rms > 0.0f) {
float scale = target_rms / static_cast<float>(prompt_rms);
for (auto &s : prompt_samples_scaled) {
s *= scale;
}
}
std::vector<float> prompt_features;
auto res_shape = ComputeMelSpectrogram(prompt_samples_scaled, sample_rate,
&prompt_features);
int32_t num_frames = res_shape[0];
int32_t mel_dim = res_shape[1];
if (feat_scale != 1.0f) {
for (auto &item : prompt_features) {
item *= feat_scale;
}
}
std::array<int64_t, 3> shape = {1, num_frames, mel_dim};
auto prompt_features_tensor = Ort::Value::CreateTensor(
memory_info, prompt_features.data(), prompt_features.size(),
shape.data(), shape.size());
Ort::Value mel =
model_->Run(std::move(tokens_tensor), std::move(prompt_tokens_tensor),
std::move(prompt_features_tensor), speed, num_steps);
// Assume mel_shape = {1, T, C}
std::vector<int64_t> mel_shape = mel.GetTensorTypeAndShapeInfo().GetShape();
int64_t T = mel_shape[1], C = mel_shape[2];
float *mel_data = mel.GetTensorMutableData<float>();
std::vector<float> mel_permuted(C * T);
for (int64_t c = 0; c < C; ++c) {
for (int64_t t = 0; t < T; ++t) {
int64_t src_idx = t * C + c; // src: [T, C] (row major)
int64_t dst_idx = c * T + t; // dst: [C, T] (row major)
mel_permuted[dst_idx] = mel_data[src_idx] / feat_scale;
}
}
std::array<int64_t, 3> new_shape = {1, C, T};
Ort::Value mel_new = Ort::Value::CreateTensor<float>(
memory_info, mel_permuted.data(), mel_permuted.size(), new_shape.data(),
new_shape.size());
GeneratedAudio ans;
ans.samples = vocoder_->Run(std::move(mel_new));
ans.sample_rate = model_->GetMetaData().sample_rate;
if (prompt_rms < target_rms && target_rms > 0.0f) {
float scale = prompt_rms / target_rms;
for (auto &s : ans.samples) {
s *= scale;
}
}
return ans;
}
private:
OfflineTtsConfig config_;
std::unique_ptr<OfflineTtsZipvoiceModel> model_;
std::unique_ptr<Vocoder> vocoder_;
std::unique_ptr<OfflineTtsFrontend> frontend_;
};
} // namespace sherpa_onnx
#endif // SHERPA_ONNX_CSRC_OFFLINE_TTS_ZIPVOICE_IMPL_H_