test.py
4.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#!/usr/bin/env python3
from typing import Iterable, List, Tuple
import jieba
import onnxruntime as ort
import soundfile as sf
import torch
class Lexicon:
def __init__(self, lexion_filename: str, tokens_filename: str):
tokens = dict()
with open(tokens_filename, encoding="utf-8") as f:
for line in f:
s, i = line.split()
tokens[s] = int(i)
lexicon = dict()
with open(lexion_filename, encoding="utf-8") as f:
for line in f:
splits = line.split()
word_or_phrase = splits[0]
phone_tone_list = splits[1:]
assert len(phone_tone_list) & 1 == 0, len(phone_tone_list)
phones = phone_tone_list[: len(phone_tone_list) // 2]
phones = [tokens[p] for p in phones]
tones = phone_tone_list[len(phone_tone_list) // 2 :]
tones = [int(t) for t in tones]
lexicon[word_or_phrase] = (phones, tones)
lexicon["呣"] = lexicon["母"]
lexicon["嗯"] = lexicon["恩"]
self.lexicon = lexicon
punctuation = ["!", "?", "…", ",", ".", "'", "-"]
for p in punctuation:
i = tokens[p]
tone = 0
self.lexicon[p] = ([i], [tone])
self.lexicon[" "] = ([tokens["_"]], [0])
def _convert(self, text: str) -> Tuple[List[int], List[int]]:
phones = []
tones = []
if text == ",":
text = ","
elif text == "。":
text = "."
elif text == "!":
text = "!"
elif text == "?":
text = "?"
if text not in self.lexicon:
print("t", text)
if len(text) > 1:
for w in text:
print("w", w)
p, t = self.convert(w)
if p:
phones += p
tones += t
return phones, tones
phones, tones = self.lexicon[text]
return phones, tones
def convert(self, text_list: Iterable[str]) -> Tuple[List[int], List[int]]:
phones = []
tones = []
for text in text_list:
print(text)
p, t = self._convert(text)
phones += p
tones += t
return phones, tones
class OnnxModel:
def __init__(self, filename):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 4
self.session_opts = session_opts
self.model = ort.InferenceSession(
filename,
sess_options=self.session_opts,
providers=["CPUExecutionProvider"],
)
meta = self.model.get_modelmeta().custom_metadata_map
self.bert_dim = int(meta["bert_dim"])
self.ja_bert_dim = int(meta["ja_bert_dim"])
self.add_blank = int(meta["add_blank"])
self.sample_rate = int(meta["sample_rate"])
self.speaker_id = int(meta["speaker_id"])
self.lang_id = int(meta["lang_id"])
self.sample_rate = int(meta["sample_rate"])
def __call__(self, x, tones):
"""
Args:
x: 1-D int64 torch tensor
tones: 1-D int64 torch tensor
"""
x = x.unsqueeze(0)
tones = tones.unsqueeze(0)
print(x.shape, tones.shape)
sid = torch.tensor([self.speaker_id], dtype=torch.int64)
noise_scale = torch.tensor([0.6], dtype=torch.float32)
length_scale = torch.tensor([1.0], dtype=torch.float32)
noise_scale_w = torch.tensor([0.8], dtype=torch.float32)
x_lengths = torch.tensor([x.shape[-1]], dtype=torch.int64)
y = self.model.run(
["y"],
{
"x": x.numpy(),
"x_lengths": x_lengths.numpy(),
"tones": tones.numpy(),
"sid": sid.numpy(),
"noise_scale": noise_scale.numpy(),
"noise_scale_w": noise_scale_w.numpy(),
"length_scale": length_scale.numpy(),
},
)[0][0][0]
return y
def main():
lexicon = Lexicon(lexion_filename="./lexicon.txt", tokens_filename="./tokens.txt")
text = "这是一个使用 next generation kaldi 的 text to speech 中英文例子. Thank you! 你觉得如何呢? are you ok? Fantastic! How about you?"
s = jieba.cut(text, HMM=True)
phones, tones = lexicon.convert(s)
model = OnnxModel("./model.onnx")
if model.add_blank:
new_phones = [0] * (2 * len(phones) + 1)
new_tones = [0] * (2 * len(tones) + 1)
new_phones[1::2] = phones
new_tones[1::2] = tones
phones = new_phones
tones = new_tones
phones = torch.tensor(phones, dtype=torch.int64)
tones = torch.tensor(tones, dtype=torch.int64)
print(phones.shape, tones.shape)
y = model(x=phones, tones=tones)
sf.write("./test.wav", y, model.sample_rate)
if __name__ == "__main__":
main()