my_init.pas 12.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
unit my_init;

{$mode ObjFPC}{$H+}

interface

uses
  {$IFDEF UNIX}
  cthreads,
  cmem,
  {$ENDIF}
  {$IFDEF HASAMIGA}
  athreads,
  {$ENDIF}
  Classes, SysUtils;

type
  TMyInitThread = class(TThread)
  private
    Status: AnsiString;
    ModelDir: AnsiString;
    procedure ShowStatus;

  protected
    procedure Execute; override;
  public
    Constructor Create(CreateSuspended: Boolean; ModelDirectory: AnsiString);
  end;

var
  MyInitThread: TMyInitThread;

implementation

uses
  unit1, sherpa_onnx;

function CreateVad(VadFilename: AnsiString): TSherpaOnnxVoiceActivityDetector;
var
  Config: TSherpaOnnxVadModelConfig;

  SampleRate: Integer;
  WindowSize: Integer;
begin
  Initialize(Config);

  SampleRate := 16000; {Please don't change it unless you know the details}
  WindowSize := 512; {Please don't change it unless you know the details}

  Config.SileroVad.Model := VadFilename;
  Config.SileroVad.MinSpeechDuration := 0.25;
  Config.SileroVad.MinSilenceDuration := 0.5;
  Config.SileroVad.MaxSpeechDuration := 5.0;
  Config.SileroVad.Threshold := 0.5;
  Config.SileroVad.WindowSize := WindowSize;
  Config.NumThreads:= 2;
  Config.Debug:= True;
  Config.Provider:= 'cpu';
  Config.SampleRate := SampleRate;

  Result := TSherpaOnnxVoiceActivityDetector.Create(Config, 30);
end;

function CreateOfflineRecognizerTransducer(
  Tokens: AnsiString;
  Encoder: AnsiString;
  Decoder: AnsiString;
  Joiner: AnsiString;
  ModelType: AnsiString): TSherpaOnnxOfflineRecognizer;
var
  Config: TSherpaOnnxOfflineRecognizerConfig;
begin
  Initialize(Config);

  Config.ModelConfig.Transducer.Encoder := Encoder;
  Config.ModelConfig.Transducer.Decoder := Decoder;
  Config.ModelConfig.Transducer.Joiner := Joiner;

  Config.ModelConfig.ModelType := ModelType;
  Config.ModelConfig.Tokens := Tokens;
  Config.ModelConfig.Provider := 'cpu';
  Config.ModelConfig.NumThreads := 2;
  Config.ModelConfig.Debug := False;

  Result := TSherpaOnnxOfflineRecognizer.Create(Config);
end;

function CreateOfflineRecognizerTeleSpeech(
  Tokens: AnsiString;
  TeleSpeech: AnsiString): TSherpaOnnxOfflineRecognizer;
var
  Config: TSherpaOnnxOfflineRecognizerConfig;
begin
  Initialize(Config);

  Config.ModelConfig.TeleSpeechCtc := TeleSpeech;

  Config.ModelConfig.Tokens := Tokens;
  Config.ModelConfig.Provider := 'cpu';
  Config.ModelConfig.NumThreads := 2;
  Config.ModelConfig.Debug := False;

  Result := TSherpaOnnxOfflineRecognizer.Create(Config);
end;

function CreateOfflineRecognizerParaformer(
  Tokens: AnsiString;
  Paraformer: AnsiString): TSherpaOnnxOfflineRecognizer;
var
  Config: TSherpaOnnxOfflineRecognizerConfig;
begin
  Initialize(Config);

  Config.ModelConfig.Paraformer.Model := Paraformer;

  Config.ModelConfig.Tokens := Tokens;
  Config.ModelConfig.Provider := 'cpu';
  Config.ModelConfig.NumThreads := 2;
  Config.ModelConfig.Debug := False;

  Result := TSherpaOnnxOfflineRecognizer.Create(Config);
end;

function CreateOfflineRecognizerSenseVoice(
  Tokens: AnsiString;
  SenseVoice: AnsiString): TSherpaOnnxOfflineRecognizer;
var
  Config: TSherpaOnnxOfflineRecognizerConfig;
begin
  Initialize(Config);

  Config.ModelConfig.SenseVoice.Model := SenseVoice;
  Config.ModelConfig.SenseVoice.Language := 'auto';
  Config.ModelConfig.SenseVoice.UseItn := True;
  Config.ModelConfig.Tokens := Tokens;
  Config.ModelConfig.Provider := 'cpu';
  Config.ModelConfig.NumThreads := 2;
  Config.ModelConfig.Debug := False;

  Result := TSherpaOnnxOfflineRecognizer.Create(Config);
end;

function CreateOfflineRecognizerWhisper(
  Tokens: AnsiString;
  WhisperEncoder: AnsiString;
  WhisperDecoder: AnsiString): TSherpaOnnxOfflineRecognizer;
var
  Config: TSherpaOnnxOfflineRecognizerConfig;
begin
  Initialize(Config);

  Config.ModelConfig.Whisper.Encoder := WhisperEncoder;
  Config.ModelConfig.Whisper.Decoder := WhisperDecoder;
  Config.ModelConfig.Tokens := Tokens;
  Config.ModelConfig.Provider := 'cpu';
  Config.ModelConfig.NumThreads := 2;
  Config.ModelConfig.Debug := False;

  Result := TSherpaOnnxOfflineRecognizer.Create(Config);
end;

function CreateOfflineRecognizerMoonshine(
  Tokens: AnsiString;
  Preprocessor: AnsiString;
  Encoder: AnsiString;
  UncachedDecoder: AnsiString;
  CachedDecoder: AnsiString): TSherpaOnnxOfflineRecognizer;
var
  Config: TSherpaOnnxOfflineRecognizerConfig;
begin
  Initialize(Config);

  Config.ModelConfig.Moonshine.Preprocessor := Preprocessor;
  Config.ModelConfig.Moonshine.Encoder := Encoder;
  Config.ModelConfig.Moonshine.UncachedDecoder := UncachedDecoder;
  Config.ModelConfig.Moonshine.CachedDecoder := CachedDecoder;

  Config.ModelConfig.Tokens := Tokens;
  Config.ModelConfig.Provider := 'cpu';
  Config.ModelConfig.NumThreads := 2;
  Config.ModelConfig.Debug := False;

  Result := TSherpaOnnxOfflineRecognizer.Create(Config);
end;

constructor TMyInitThread.Create(CreateSuspended : boolean; ModelDirectory: AnsiString);
begin
  inherited Create(CreateSuspended);
  ModelDir := ModelDirectory;
  FreeOnTerminate := True;
end;

procedure TMyInitThread.ShowStatus;
begin
  Form1.UpdateInitStatus(Status);
end;

procedure TMyInitThread.Execute;
var
  Msg: AnsiString;
  VadFilename: AnsiString;
  Tokens: AnsiString;

  WhisperEncoder: AnsiString;
  WhisperDecoder: AnsiString;

  SenseVoice: AnsiString;

  Paraformer: AnsiString;

  TeleSpeech: AnsiString;

  TransducerEncoder: AnsiString; // from icefall
  TransducerDecoder: AnsiString;
  TransducerJoiner: AnsiString;

  NeMoTransducerEncoder: AnsiString;
  NeMoTransducerDecoder: AnsiString;
  NeMoTransducerJoiner: AnsiString;

  MoonshinePreprocessor: AnsiString;
  MoonshineEncoder: AnsiString;
  MoonshineUncachedDecoder: AnsiString;
  MoonshineCachedDecoder: AnsiString;
begin
    VadFilename := ModelDir + 'silero_vad.onnx';
    Tokens := ModelDir + 'tokens.txt';

    {
      Please refer to
      https://k2-fsa.github.io/sherpa/onnx/pretrained_models/whisper/export-onnx.html#available-models
      for a list of whisper models.

      In the code, we use the normalized filename whisper-encoder.onnx, whisper-decoder.onnx, and tokens.txt
      You need to rename the existing model files.

      For instance, if you use sherpa-onnx-whisper-tiny.en, you have to do
        mv tiny.en-tokens.txt tokens.txt

        mv tiny.en-encoder.onnx whisper-encoder.onnx
        mv tiny.en-decoder.onnx whisper-decoder.onnx

        // or use the int8.onnx

        mv tiny.en-encoder.int8.onnx whisper-encoder.onnx
        mv tiny.en-decoder.int8.onnx whisper-decoder.onnx
    }
    WhisperEncoder := ModelDir + 'whisper-encoder.onnx';
    WhisperDecoder := ModelDir + 'whisper-decoder.onnx';


    {
      Please refer to
      https://k2-fsa.github.io/sherpa/onnx/sense-voice/pretrained.html#pre-trained-models
      to download models for SenseVoice.

      In the code, we use the normalized model name sense-voice.onnx. You have
      to rename the downloaded model files.

      For example, you need to use

          mv model.onnx sense-voice.onnx

          // or use the int8.onnx
          mv model.int8.onnx sense-voice.onnx
    }

    SenseVoice := ModelDir + 'sense-voice.onnx';

    {
      Please refer to
      https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-paraformer/index.html
      to download paraformer models.

      Note that you have to rename model.onnx or model.int8.onnx to paraformer.onnx.
      An example is given below for the rename:

        cp model.onnx paraformer.onnx

        // or use int8.onnx
        cp model.int8.onnx paraformer.onnx
    }
    Paraformer := ModelDir + 'paraformer.onnx';


    {
      please refer to
      https://k2-fsa.github.io/sherpa/onnx/pretrained_models/telespeech/models.html
      to download TeleSpeech models.

      Note that you have to rename model files after downloading. The following
      is an example

         mv model.onnx telespeech.onnx

         // or to use int8.onnx

         mv model.int8.onnx telespeech.onnx
    }

    TeleSpeech := ModelDir + 'telespeech.onnx';


    {
      Please refer to
      https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
      to download an icefall offline transducer model. Note that you need to rename the
      model files to transducer-encoder.onnx, transducer-decoder.onnx, and
      transducer-joiner.onnx
    }
    TransducerEncoder := ModelDir + 'transducer-encoder.onnx';
    TransducerDecoder := ModelDir + 'transducer-decoder.onnx';
    TransducerJoiner := ModelDir + 'transducer-joiner.onnx';

    {
      Please visit
      https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
      to donwload a NeMo transducer model.
    }
    NeMoTransducerEncoder := ModelDir + 'nemo-transducer-encoder.onnx';
    NeMoTransducerDecoder := ModelDir + 'nemo-transducer-decoder.onnx';
    NeMoTransducerJoiner := ModelDir + 'nemo-transducer-joiner.onnx';

    {
      Please Visit
      https://k2-fsa.github.io/sherpa/onnx/moonshine/models.html
      to download a Moonshine model.

      Note that you have to rename model files after downloading. The following
      is an example.

      mv preprocess.onnx moonshine-preprocessor.onnx
      mv encode.int8.onnx moonshine-encoder.onnx
      mv uncached_decode.int8.onnx moonshine-uncached-decoder.onnx
      mv cached_decode.int8.onnx moonshine-cached-decoder.onnx
    }
    MoonshinePreprocessor := ModelDir + 'moonshine-preprocessor.onnx';
    MoonshineEncoder := ModelDir + 'moonshine-encoder.onnx';
    MoonshineUncachedDecoder := ModelDir + 'moonshine-uncached-decoder.onnx';
    MoonshineCachedDecoder := ModelDir + 'moonshine-cached-decoder.onnx';

    if not FileExists(VadFilename) then
      begin
        Status := VadFilename + ' does not exist! Please download it from' +
          sLineBreak + 'https://github.com/k2-fsa/sherpa-onnx/tree/asr-models';
        Synchronize(@ShowStatus);
        Exit;
      end;

    if Form1.Vad = nil then
      begin
        Form1.Vad := CreateVad(VadFilename);
      end;

    if not FileExists(Tokens) then
      begin
        Status := Tokens + ' not found. Please download a non-streaming ASR model first!';
        Synchronize(@ShowStatus);
        Exit;
      end;

    if FileExists(WhisperEncoder) and FileExists(WhisperDecoder) then
      begin
        Form1.OfflineRecognizer := CreateOfflineRecognizerWhisper(Tokens, WhisperEncoder, WhisperDecoder);
        Msg := 'Whisper';
      end
    else if FileExists(SenseVoice) then
      begin
        Form1.OfflineRecognizer := CreateOfflineRecognizerSenseVoice(Tokens, SenseVoice);
        Msg := 'SenseVoice';
      end
    else if FileExists(Paraformer) then
      begin
        Form1.OfflineRecognizer := CreateOfflineRecognizerParaformer(Tokens, Paraformer);
        Msg := 'Paraformer';
      end
    else if FileExists(TeleSpeech) then
      begin
        Form1.OfflineRecognizer := CreateOfflineRecognizerTeleSpeech(Tokens, TeleSpeech);
        Msg := 'TeleSpeech';
      end
    else if FileExists(TransducerEncoder) and FileExists(TransducerDecoder) and FileExists(TransducerJoiner) then
        begin
          Form1.OfflineRecognizer := CreateOfflineRecognizerTransducer(Tokens,
            TransducerEncoder, TransducerDecoder, TransducerJoiner, 'transducer');
          Msg := 'Zipformer transducer';
        end
    else if FileExists(NeMoTransducerEncoder) and FileExists(NeMoTransducerDecoder) and FileExists(NeMoTransducerJoiner) then
        begin
          Form1.OfflineRecognizer := CreateOfflineRecognizerTransducer(Tokens,
            NeMoTransducerEncoder, NeMoTransducerDecoder, NeMoTransducerJoiner, 'nemo_transducer');
          Msg := 'NeMo transducer';
        end
    else if FileExists(MoonshinePreprocessor) and FileExists(MoonshineEncoder) and FileExists(MoonshineUncachedDecoder) and FileExists(MoonshineCachedDecoder) then
        begin
          Form1.OfflineRecognizer := CreateOfflineRecognizerMoonshine(Tokens,
            MoonshinePreprocessor, MoonshineEncoder, MoonshineUncachedDecoder,
            MoonshineCachedDecoder);
          Msg := 'Moonshine';
        end
    else
      begin
        Status := 'Please download at least one non-streaming speech recognition model first.';
        Synchronize(@ShowStatus);
        Exit;
      end;

    Status := 'Congratulations! The ' + Msg + ' model is initialized succesfully!';
    Synchronize(@ShowStatus);
end;

end.