zipformer-ctc.dart
2.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
// Copyright (c) 2024 Xiaomi Corporation
import 'dart:io';
import 'dart:typed_data';
import 'package:args/args.dart';
import 'package:sherpa_onnx/sherpa_onnx.dart' as sherpa_onnx;
import './init.dart';
void main(List<String> arguments) async {
await initSherpaOnnx();
final parser = ArgParser()
..addOption('model', help: 'Path to the model')
..addOption('tokens', help: 'Path to tokens.txt')
..addOption('input-wav', help: 'Path to input.wav to transcribe');
final res = parser.parse(arguments);
if (res['model'] == null ||
res['tokens'] == null ||
res['input-wav'] == null) {
print(parser.usage);
exit(1);
}
final model = res['model'] as String;
final tokens = res['tokens'] as String;
final inputWav = res['input-wav'] as String;
final ctc = sherpa_onnx.OnlineZipformer2CtcModelConfig(
model: model,
);
final modelConfig = sherpa_onnx.OnlineModelConfig(
zipformer2Ctc: ctc,
tokens: tokens,
debug: true,
numThreads: 1,
);
final config = sherpa_onnx.OnlineRecognizerConfig(model: modelConfig);
final recognizer = sherpa_onnx.OnlineRecognizer(config);
final waveData = sherpa_onnx.readWave(inputWav);
final stream = recognizer.createStream();
// simulate streaming. You can choose an arbitrary chunk size.
// chunkSize of a single sample is also ok, i.e, chunkSize = 1
final chunkSize = 1600; // 0.1 second for 16kHz
final numChunks = waveData.samples.length ~/ chunkSize;
var last = '';
for (int i = 0; i != numChunks; ++i) {
int start = i * chunkSize;
stream.acceptWaveform(
samples:
Float32List.sublistView(waveData.samples, start, start + chunkSize),
sampleRate: waveData.sampleRate,
);
while (recognizer.isReady(stream)) {
recognizer.decode(stream);
}
final result = recognizer.getResult(stream);
if (result.text != last && result.text != '') {
last = result.text;
print(last);
}
}
// 0.5 seconds, assume sampleRate is 16kHz
final tailPaddings = Float32List(8000);
stream.acceptWaveform(
samples: tailPaddings,
sampleRate: waveData.sampleRate,
);
while (recognizer.isReady(stream)) {
recognizer.decode(stream);
}
final result = recognizer.getResult(stream);
if (result.text != '') {
print(result.text);
}
stream.free();
recognizer.free();
}