online-recognizer-transducer-impl.h 17.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
// sherpa-onnx/csrc/online-recognizer-transducer-impl.h
//
// Copyright (c)  2022-2023  Xiaomi Corporation

#ifndef SHERPA_ONNX_CSRC_ONLINE_RECOGNIZER_TRANSDUCER_IMPL_H_
#define SHERPA_ONNX_CSRC_ONLINE_RECOGNIZER_TRANSDUCER_IMPL_H_

#include <algorithm>
#include <ios>
#include <memory>
#include <regex>  // NOLINT
#include <sstream>
#include <string>
#include <utility>
#include <vector>

#if __ANDROID_API__ >= 9
#include "android/asset_manager.h"
#include "android/asset_manager_jni.h"
#endif

#include "sherpa-onnx/csrc/file-utils.h"
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/online-lm.h"
#include "sherpa-onnx/csrc/online-recognizer-impl.h"
#include "sherpa-onnx/csrc/online-recognizer.h"
#include "sherpa-onnx/csrc/online-transducer-decoder.h"
#include "sherpa-onnx/csrc/online-transducer-greedy-search-decoder.h"
#include "sherpa-onnx/csrc/online-transducer-model.h"
#include "sherpa-onnx/csrc/online-transducer-modified-beam-search-decoder.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
#include "sherpa-onnx/csrc/symbol-table.h"
#include "sherpa-onnx/csrc/utils.h"
#include "ssentencepiece/csrc/ssentencepiece.h"

namespace sherpa_onnx {

OnlineRecognizerResult Convert(const OnlineTransducerDecoderResult &src,
                               const SymbolTable &sym_table,
                               float frame_shift_ms, int32_t subsampling_factor,
                               int32_t segment, int32_t frames_since_start) {
  OnlineRecognizerResult r;
  r.tokens.reserve(src.tokens.size());
  r.timestamps.reserve(src.tokens.size());

  for (auto i : src.tokens) {
    auto sym = sym_table[i];

    r.text.append(sym);

    if (sym.size() == 1 && (sym[0] < 0x20 || sym[0] > 0x7e)) {
      // for byte bpe models
      // (but don't rewrite printable characters 0x20..0x7e,
      //  which collide with standard BPE units)
      std::ostringstream os;
      os << "<0x" << std::hex << std::uppercase
         << (static_cast<int32_t>(sym[0]) & 0xff) << ">";
      sym = os.str();
    }

    r.tokens.push_back(std::move(sym));
  }

  float frame_shift_s = frame_shift_ms / 1000. * subsampling_factor;
  for (auto t : src.timestamps) {
    float time = frame_shift_s * t;
    r.timestamps.push_back(time);
  }

  r.ys_probs = std::move(src.ys_probs);
  r.lm_probs = std::move(src.lm_probs);
  r.context_scores = std::move(src.context_scores);

  r.segment = segment;
  r.start_time = frames_since_start * frame_shift_ms / 1000.;

  return r;
}

class OnlineRecognizerTransducerImpl : public OnlineRecognizerImpl {
 public:
  explicit OnlineRecognizerTransducerImpl(const OnlineRecognizerConfig &config)
      : OnlineRecognizerImpl(config),
        config_(config),
        model_(OnlineTransducerModel::Create(config.model_config)),
        endpoint_(config_.endpoint_config) {
    if (!config.model_config.tokens_buf.empty()) {
      sym_ = SymbolTable(config.model_config.tokens_buf, false);
    } else {
      /// assuming tokens_buf and tokens are guaranteed not being both empty
      sym_ = SymbolTable(config.model_config.tokens, true);
    }

    if (sym_.Contains("<unk>")) {
      unk_id_ = sym_["<unk>"];
    }

    model_->SetFeatureDim(config.feat_config.feature_dim);

    if (config.decoding_method == "modified_beam_search") {
      if (!config_.model_config.bpe_vocab.empty()) {
        bpe_encoder_ = std::make_unique<ssentencepiece::Ssentencepiece>(
            config_.model_config.bpe_vocab);
      }

      if (!config_.hotwords_buf.empty()) {
        InitHotwordsFromBufStr();
      } else if (!config_.hotwords_file.empty()) {
        InitHotwords();
      }

      if (!config_.lm_config.model.empty()) {
        lm_ = OnlineLM::Create(config.lm_config);
      }

      decoder_ = std::make_unique<OnlineTransducerModifiedBeamSearchDecoder>(
          model_.get(), lm_.get(), config_.max_active_paths,
          config_.lm_config.scale, config_.lm_config.shallow_fusion, unk_id_,
          config_.blank_penalty, config_.temperature_scale);

    } else if (config.decoding_method == "greedy_search") {
      decoder_ = std::make_unique<OnlineTransducerGreedySearchDecoder>(
          model_.get(), unk_id_, config_.blank_penalty,
          config_.temperature_scale);

    } else {
      SHERPA_ONNX_LOGE("Unsupported decoding method: %s",
                       config.decoding_method.c_str());
      exit(-1);
    }
  }

#if __ANDROID_API__ >= 9
  explicit OnlineRecognizerTransducerImpl(AAssetManager *mgr,
                                          const OnlineRecognizerConfig &config)
      : OnlineRecognizerImpl(mgr, config),
        config_(config),
        model_(OnlineTransducerModel::Create(mgr, config.model_config)),
        sym_(mgr, config.model_config.tokens),
        endpoint_(config_.endpoint_config) {
    if (sym_.Contains("<unk>")) {
      unk_id_ = sym_["<unk>"];
    }

    model_->SetFeatureDim(config.feat_config.feature_dim);

    if (config.decoding_method == "modified_beam_search") {
#if 0
      // TODO(fangjun): Implement it
      if (!config_.lm_config.model.empty()) {
        lm_ = OnlineLM::Create(mgr, config.lm_config);
      }
#endif

      if (!config_.model_config.bpe_vocab.empty()) {
        auto buf = ReadFile(mgr, config_.model_config.bpe_vocab);
        std::istringstream iss(std::string(buf.begin(), buf.end()));
        bpe_encoder_ = std::make_unique<ssentencepiece::Ssentencepiece>(iss);
      }

      if (!config_.hotwords_file.empty()) {
        InitHotwords(mgr);
      }

      decoder_ = std::make_unique<OnlineTransducerModifiedBeamSearchDecoder>(
          model_.get(), lm_.get(), config_.max_active_paths,
          config_.lm_config.scale, config_.lm_config.shallow_fusion, unk_id_,
          config_.blank_penalty, config_.temperature_scale);

    } else if (config.decoding_method == "greedy_search") {
      decoder_ = std::make_unique<OnlineTransducerGreedySearchDecoder>(
          model_.get(), unk_id_, config_.blank_penalty,
          config_.temperature_scale);

    } else {
      SHERPA_ONNX_LOGE("Unsupported decoding method: %s",
                       config.decoding_method.c_str());
      exit(-1);
    }
  }
#endif

  std::unique_ptr<OnlineStream> CreateStream() const override {
    auto stream =
        std::make_unique<OnlineStream>(config_.feat_config, hotwords_graph_);
    InitOnlineStream(stream.get());
    return stream;
  }

  std::unique_ptr<OnlineStream> CreateStream(
      const std::string &hotwords) const override {
    auto hws = std::regex_replace(hotwords, std::regex("/"), "\n");
    std::istringstream is(hws);
    std::vector<std::vector<int32_t>> current;
    std::vector<float> current_scores;
    if (!EncodeHotwords(is, config_.model_config.modeling_unit, sym_,
                        bpe_encoder_.get(), &current, &current_scores)) {
      SHERPA_ONNX_LOGE("Encode hotwords failed, skipping, hotwords are : %s",
                       hotwords.c_str());
    }

    int32_t num_default_hws = hotwords_.size();
    int32_t num_hws = current.size();

    current.insert(current.end(), hotwords_.begin(), hotwords_.end());

    if (!current_scores.empty() && !boost_scores_.empty()) {
      current_scores.insert(current_scores.end(), boost_scores_.begin(),
                            boost_scores_.end());
    } else if (!current_scores.empty() && boost_scores_.empty()) {
      current_scores.insert(current_scores.end(), num_default_hws,
                            config_.hotwords_score);
    } else if (current_scores.empty() && !boost_scores_.empty()) {
      current_scores.insert(current_scores.end(), num_hws,
                            config_.hotwords_score);
      current_scores.insert(current_scores.end(), boost_scores_.begin(),
                            boost_scores_.end());
    } else {
      // Do nothing.
    }

    auto context_graph = std::make_shared<ContextGraph>(
        current, config_.hotwords_score, current_scores);
    auto stream =
        std::make_unique<OnlineStream>(config_.feat_config, context_graph);
    InitOnlineStream(stream.get());
    return stream;
  }

  bool IsReady(OnlineStream *s) const override {
    return s->GetNumProcessedFrames() + model_->ChunkSize() <
           s->NumFramesReady();
  }

  // Warmping up engine with wp: warm_up count and max-batch-size
  void WarmpUpRecognizer(int32_t warmup, int32_t mbs) const override {
    auto max_batch_size = mbs;
    if (warmup <= 0 || warmup > 100) {
      return;
    }
    int32_t chunk_size = model_->ChunkSize();
    int32_t chunk_shift = model_->ChunkShift();
    int32_t feature_dim = 80;
    std::vector<OnlineTransducerDecoderResult> results(max_batch_size);
    std::vector<float> features_vec(max_batch_size * chunk_size * feature_dim);
    std::vector<std::vector<Ort::Value>> states_vec(max_batch_size);

    auto memory_info =
        Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);

    std::array<int64_t, 3> x_shape{max_batch_size, chunk_size, feature_dim};

    for (int32_t i = 0; i != max_batch_size; ++i) {
      states_vec[i] = model_->GetEncoderInitStates();
      results[i] = decoder_->GetEmptyResult();
    }

    for (int32_t i = 0; i != warmup; ++i) {
      auto states = model_->StackStates(states_vec);
      Ort::Value x = Ort::Value::CreateTensor(memory_info, features_vec.data(),
                                              features_vec.size(),
                                              x_shape.data(), x_shape.size());
      auto x_copy = Clone(model_->Allocator(), &x);
      auto pair = model_->RunEncoder(std::move(x), std::move(states),
                                     std::move(x_copy));
      decoder_->Decode(std::move(pair.first), &results);
    }
  }

  void DecodeStreams(OnlineStream **ss, int32_t n) const override {
    int32_t chunk_size = model_->ChunkSize();
    int32_t chunk_shift = model_->ChunkShift();

    int32_t feature_dim = ss[0]->FeatureDim();

    std::vector<OnlineTransducerDecoderResult> results(n);
    std::vector<float> features_vec(n * chunk_size * feature_dim);
    std::vector<std::vector<Ort::Value>> states_vec(n);
    std::vector<int64_t> all_processed_frames(n);
    bool has_context_graph = false;

    for (int32_t i = 0; i != n; ++i) {
      if (!has_context_graph && ss[i]->GetContextGraph()) {
        has_context_graph = true;
      }

      const auto num_processed_frames = ss[i]->GetNumProcessedFrames();
      std::vector<float> features =
          ss[i]->GetFrames(num_processed_frames, chunk_size);

      // Question: should num_processed_frames include chunk_shift?
      ss[i]->GetNumProcessedFrames() += chunk_shift;

      std::copy(features.begin(), features.end(),
                features_vec.data() + i * chunk_size * feature_dim);

      results[i] = std::move(ss[i]->GetResult());
      states_vec[i] = std::move(ss[i]->GetStates());
      all_processed_frames[i] = num_processed_frames;
    }

    auto memory_info =
        Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);

    std::array<int64_t, 3> x_shape{n, chunk_size, feature_dim};

    Ort::Value x = Ort::Value::CreateTensor(memory_info, features_vec.data(),
                                            features_vec.size(), x_shape.data(),
                                            x_shape.size());

    std::array<int64_t, 1> processed_frames_shape{
        static_cast<int64_t>(all_processed_frames.size())};

    Ort::Value processed_frames = Ort::Value::CreateTensor(
        memory_info, all_processed_frames.data(), all_processed_frames.size(),
        processed_frames_shape.data(), processed_frames_shape.size());

    auto states = model_->StackStates(states_vec);

    auto pair = model_->RunEncoder(std::move(x), std::move(states),
                                   std::move(processed_frames));

    if (has_context_graph) {
      decoder_->Decode(std::move(pair.first), ss, &results);
    } else {
      decoder_->Decode(std::move(pair.first), &results);
    }

    std::vector<std::vector<Ort::Value>> next_states =
        model_->UnStackStates(pair.second);

    for (int32_t i = 0; i != n; ++i) {
      ss[i]->SetResult(results[i]);
      ss[i]->SetStates(std::move(next_states[i]));
    }
  }

  OnlineRecognizerResult GetResult(OnlineStream *s) const override {
    OnlineTransducerDecoderResult decoder_result = s->GetResult();
    decoder_->StripLeadingBlanks(&decoder_result);

    // TODO(fangjun): Remember to change these constants if needed
    int32_t frame_shift_ms = 10;
    int32_t subsampling_factor = 4;
    auto r = Convert(decoder_result, sym_, frame_shift_ms, subsampling_factor,
                     s->GetCurrentSegment(), s->GetNumFramesSinceStart());
    r.text = ApplyInverseTextNormalization(std::move(r.text));
    return r;
  }

  bool IsEndpoint(OnlineStream *s) const override {
    if (!config_.enable_endpoint) {
      return false;
    }

    int32_t num_processed_frames = s->GetNumProcessedFrames();

    // frame shift is 10 milliseconds
    float frame_shift_in_seconds = 0.01;

    // subsampling factor is 4
    int32_t trailing_silence_frames = s->GetResult().num_trailing_blanks * 4;

    return endpoint_.IsEndpoint(num_processed_frames, trailing_silence_frames,
                                frame_shift_in_seconds);
  }

  void Reset(OnlineStream *s) const override {
    int32_t context_size = model_->ContextSize();

    {
      // segment is incremented only when the last
      // result is not empty, contains non-blanks and longer than context_size)
      const auto &r = s->GetResult();
      if (!r.tokens.empty() && r.tokens.back() != 0 &&
          r.tokens.size() > context_size) {
        s->GetCurrentSegment() += 1;
      }
    }

    // reset encoder states
    // s->SetStates(model_->GetEncoderInitStates());

    auto r = decoder_->GetEmptyResult();
    auto last_result = s->GetResult();
    // if last result is not empty, then
    // preserve last tokens as the context for next result
    if (static_cast<int32_t>(last_result.tokens.size()) > context_size) {
      std::vector<int64_t> context(last_result.tokens.end() - context_size,
                                   last_result.tokens.end());

      Hypotheses context_hyp({{context, 0}});
      r.hyps = std::move(context_hyp);
      r.tokens = std::move(context);
    }

    if (config_.decoding_method == "modified_beam_search" &&
        nullptr != s->GetContextGraph()) {
      for (auto it = r.hyps.begin(); it != r.hyps.end(); ++it) {
        it->second.context_state = s->GetContextGraph()->Root();
      }
    }

    s->SetResult(r);

    // Note: We only update counters. The underlying audio samples
    // are not discarded.
    s->Reset();
  }

 private:
  void InitHotwords() {
    // each line in hotwords_file contains space-separated words

    std::ifstream is(config_.hotwords_file);
    if (!is) {
      SHERPA_ONNX_LOGE("Open hotwords file failed: %s",
                       config_.hotwords_file.c_str());
      exit(-1);
    }

    if (!EncodeHotwords(is, config_.model_config.modeling_unit, sym_,
                        bpe_encoder_.get(), &hotwords_, &boost_scores_)) {
      SHERPA_ONNX_LOGE(
          "Failed to encode some hotwords, skip them already, see logs above "
          "for details.");
    }
    hotwords_graph_ = std::make_shared<ContextGraph>(
        hotwords_, config_.hotwords_score, boost_scores_);
  }

#if __ANDROID_API__ >= 9
  void InitHotwords(AAssetManager *mgr) {
    // each line in hotwords_file contains space-separated words

    auto buf = ReadFile(mgr, config_.hotwords_file);

    std::istringstream is(std::string(buf.begin(), buf.end()));

    if (!is) {
      SHERPA_ONNX_LOGE("Open hotwords file failed: %s",
                       config_.hotwords_file.c_str());
      exit(-1);
    }

    if (!EncodeHotwords(is, config_.model_config.modeling_unit, sym_,
                        bpe_encoder_.get(), &hotwords_, &boost_scores_)) {
      SHERPA_ONNX_LOGE(
          "Failed to encode some hotwords, skip them already, see logs above "
          "for details.");
    }
    hotwords_graph_ = std::make_shared<ContextGraph>(
        hotwords_, config_.hotwords_score, boost_scores_);
  }
#endif

  void InitHotwordsFromBufStr() {
    // each line in hotwords_file contains space-separated words

    std::istringstream iss(config_.hotwords_buf);
    if (!EncodeHotwords(iss, config_.model_config.modeling_unit, sym_,
                        bpe_encoder_.get(), &hotwords_, &boost_scores_)) {
      SHERPA_ONNX_LOGE(
          "Failed to encode some hotwords, skip them already, see logs above "
          "for details.");
    }
    hotwords_graph_ = std::make_shared<ContextGraph>(
        hotwords_, config_.hotwords_score, boost_scores_);
  }

  void InitOnlineStream(OnlineStream *stream) const {
    auto r = decoder_->GetEmptyResult();

    if (config_.decoding_method == "modified_beam_search" &&
        nullptr != stream->GetContextGraph()) {
      // r.hyps has only one element.
      for (auto it = r.hyps.begin(); it != r.hyps.end(); ++it) {
        it->second.context_state = stream->GetContextGraph()->Root();
      }
    }

    stream->SetResult(r);
    stream->SetStates(model_->GetEncoderInitStates());
  }

 private:
  OnlineRecognizerConfig config_;
  std::vector<std::vector<int32_t>> hotwords_;
  std::vector<float> boost_scores_;
  ContextGraphPtr hotwords_graph_;
  std::unique_ptr<ssentencepiece::Ssentencepiece> bpe_encoder_;
  std::unique_ptr<OnlineTransducerModel> model_;
  std::unique_ptr<OnlineLM> lm_;
  std::unique_ptr<OnlineTransducerDecoder> decoder_;
  SymbolTable sym_;
  Endpoint endpoint_;
  int32_t unk_id_ = -1;
};

}  // namespace sherpa_onnx

#endif  // SHERPA_ONNX_CSRC_ONLINE_RECOGNIZER_TRANSDUCER_IMPL_H_