streaming_server.py 25.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
#!/usr/bin/env python3
# Copyright      2022-2023  Xiaomi Corp.
#
"""
A server for streaming ASR recognition. By streaming it means the audio samples
are coming in real-time. You don't need to wait until all audio samples are
captured before sending them for recognition.

It supports multiple clients sending at the same time.

Usage:
    ./streaming_server.py --help

Example:

(1) Without a certificate

python3 ./python-api-examples/streaming_server.py \
  --encoder ./sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/encoder-epoch-99-avg-1.onnx \
  --decoder ./sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/decoder-epoch-99-avg-1.onnx \
  --joiner ./sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/joiner-epoch-99-avg-1.onnx \
  --tokens ./sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/tokens.txt

(2) With a certificate

(a) Generate a certificate first:

    cd python-api-examples/web
    ./generate-certificate.py
    cd ../..

(b) Start the server

python3 ./python-api-examples/streaming_server.py \
  --encoder ./sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/encoder-epoch-99-avg-1.onnx \
  --decoder ./sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/decoder-epoch-99-avg-1.onnx \
  --joiner ./sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/joiner-epoch-99-avg-1.onnx \
  --tokens ./sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/tokens.txt \
  --certificate ./python-api-examples/web/cert.pem

Please refer to
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/online-transducer/index.html
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/wenet/index.html
to download pre-trained models.

The model in the above help messages is from
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/online-transducer/zipformer-transducer-models.html#csukuangfj-sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20-bilingual-chinese-english

To use a WeNet streaming Conformer CTC model, please use

python3 ./python-api-examples/streaming_server.py \
  --tokens=./sherpa-onnx-zh-wenet-wenetspeech/tokens.txt \
  --wenet-ctc=./sherpa-onnx-zh-wenet-wenetspeech/model-streaming.onnx
"""

import argparse
import asyncio
import http
import json
import logging
import socket
import ssl
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
from pathlib import Path
from typing import List, Optional, Tuple

import numpy as np
import sherpa_onnx
import websockets

from http_server import HttpServer


def setup_logger(
    log_filename: str,
    log_level: str = "info",
    use_console: bool = True,
) -> None:
    """Setup log level.

    Args:
      log_filename:
        The filename to save the log.
      log_level:
        The log level to use, e.g., "debug", "info", "warning", "error",
        "critical"
      use_console:
        True to also print logs to console.
    """
    now = datetime.now()
    date_time = now.strftime("%Y-%m-%d-%H-%M-%S")
    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
    log_filename = f"{log_filename}-{date_time}.txt"

    Path(log_filename).parent.mkdir(parents=True, exist_ok=True)

    level = logging.ERROR
    if log_level == "debug":
        level = logging.DEBUG
    elif log_level == "info":
        level = logging.INFO
    elif log_level == "warning":
        level = logging.WARNING
    elif log_level == "critical":
        level = logging.CRITICAL

    logging.basicConfig(
        filename=log_filename,
        format=formatter,
        level=level,
        filemode="w",
    )
    if use_console:
        console = logging.StreamHandler()
        console.setLevel(level)
        console.setFormatter(logging.Formatter(formatter))
        logging.getLogger("").addHandler(console)


def add_model_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        "--encoder",
        type=str,
        help="Path to the transducer encoder model",
    )

    parser.add_argument(
        "--decoder",
        type=str,
        help="Path to the transducer decoder model.",
    )

    parser.add_argument(
        "--joiner",
        type=str,
        help="Path to the transducer joiner model.",
    )

    parser.add_argument(
        "--wenet-ctc",
        type=str,
        help="Path to the model.onnx from WeNet",
    )

    parser.add_argument(
        "--paraformer-encoder",
        type=str,
        help="Path to the paraformer encoder model",
    )

    parser.add_argument(
        "--paraformer-decoder",
        type=str,
        help="Path to the transducer decoder model.",
    )

    parser.add_argument(
        "--tokens",
        type=str,
        required=True,
        help="Path to tokens.txt",
    )

    parser.add_argument(
        "--sample-rate",
        type=int,
        default=16000,
        help="Sample rate of the data used to train the model. "
        "Caution: If your input sound files have a different sampling rate, "
        "we will do resampling inside",
    )

    parser.add_argument(
        "--feat-dim",
        type=int,
        default=80,
        help="Feature dimension of the model",
    )

    parser.add_argument(
        "--provider",
        type=str,
        default="cpu",
        help="Valid values: cpu, cuda, coreml",
    )


def add_decoding_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        "--decoding-method",
        type=str,
        default="greedy_search",
        help="""Decoding method to use. Current supported methods are:
        - greedy_search
        - modified_beam_search
        """,
    )

    add_modified_beam_search_args(parser)


def add_hotwords_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        "--hotwords-file",
        type=str,
        default="",
        help="""
        The file containing hotwords, one words/phrases per line, and for each
        phrase the bpe/cjkchar are separated by a space. For example:

        ▁HE LL O ▁WORLD
        你 好 世 界
        """,
    )

    parser.add_argument(
        "--hotwords-score",
        type=float,
        default=1.5,
        help="""
        The hotword score of each token for biasing word/phrase. Used only if
        --hotwords-file is given.
        """,
    )


def add_modified_beam_search_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        "--num-active-paths",
        type=int,
        default=4,
        help="""Used only when --decoding-method is modified_beam_search.
        It specifies number of active paths to keep during decoding.
        """,
    )


def add_endpointing_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        "--use-endpoint",
        type=int,
        default=1,
        help="1 to enable endpoiting. 0 to disable it",
    )

    parser.add_argument(
        "--rule1-min-trailing-silence",
        type=float,
        default=2.4,
        help="""This endpointing rule1 requires duration of trailing silence
        in seconds) to be >= this value""",
    )

    parser.add_argument(
        "--rule2-min-trailing-silence",
        type=float,
        default=1.2,
        help="""This endpointing rule2 requires duration of trailing silence in
        seconds) to be >= this value.""",
    )

    parser.add_argument(
        "--rule3-min-utterance-length",
        type=float,
        default=20,
        help="""This endpointing rule3 requires utterance-length (in seconds)
        to be >= this value.""",
    )


def get_args():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )

    add_model_args(parser)
    add_decoding_args(parser)
    add_endpointing_args(parser)
    add_hotwords_args(parser)

    parser.add_argument(
        "--port",
        type=int,
        default=6006,
        help="The server will listen on this port",
    )

    parser.add_argument(
        "--nn-pool-size",
        type=int,
        default=1,
        help="Number of threads for NN computation and decoding.",
    )

    parser.add_argument(
        "--max-batch-size",
        type=int,
        default=50,
        help="""Max batch size for computation. Note if there are not enough
        requests in the queue, it will wait for max_wait_ms time. After that,
        even if there are not enough requests, it still sends the
        available requests in the queue for computation.
        """,
    )

    parser.add_argument(
        "--max-wait-ms",
        type=float,
        default=10,
        help="""Max time in millisecond to wait to build batches for inference.
        If there are not enough requests in the stream queue to build a batch
        of max_batch_size, it waits up to this time before fetching available
        requests for computation.
        """,
    )

    parser.add_argument(
        "--max-message-size",
        type=int,
        default=(1 << 20),
        help="""Max message size in bytes.
        The max size per message cannot exceed this limit.
        """,
    )

    parser.add_argument(
        "--max-queue-size",
        type=int,
        default=32,
        help="Max number of messages in the queue for each connection.",
    )

    parser.add_argument(
        "--max-active-connections",
        type=int,
        default=500,
        help="""Maximum number of active connections. The server will refuse
        to accept new connections once the current number of active connections
        equals to this limit.
        """,
    )

    parser.add_argument(
        "--num-threads",
        type=int,
        default=2,
        help="Number of threads to run the neural network model",
    )

    parser.add_argument(
        "--certificate",
        type=str,
        help="""Path to the X.509 certificate. You need it only if you want to
        use a secure websocket connection, i.e., use wss:// instead of ws://.
        You can use ./web/generate-certificate.py
        to generate the certificate `cert.pem`.
        Note ./web/generate-certificate.py will generate three files but you
        only need to pass the generated cert.pem to this option.
        """,
    )

    parser.add_argument(
        "--doc-root",
        type=str,
        default="./python-api-examples/web",
        help="Path to the web root",
    )

    return parser.parse_args()


def create_recognizer(args) -> sherpa_onnx.OnlineRecognizer:
    if args.encoder:
        recognizer = sherpa_onnx.OnlineRecognizer.from_transducer(
            tokens=args.tokens,
            encoder=args.encoder,
            decoder=args.decoder,
            joiner=args.joiner,
            num_threads=args.num_threads,
            sample_rate=args.sample_rate,
            feature_dim=args.feat_dim,
            decoding_method=args.decoding_method,
            max_active_paths=args.num_active_paths,
            hotwords_score=args.hotwords_score,
            hotwords_file=args.hotwords_file,
            enable_endpoint_detection=args.use_endpoint != 0,
            rule1_min_trailing_silence=args.rule1_min_trailing_silence,
            rule2_min_trailing_silence=args.rule2_min_trailing_silence,
            rule3_min_utterance_length=args.rule3_min_utterance_length,
            provider=args.provider,
        )
    elif args.paraformer_encoder:
        recognizer = sherpa_onnx.OnlineRecognizer.from_paraformer(
            tokens=args.tokens,
            encoder=args.paraformer_encoder,
            decoder=args.paraformer_decoder,
            num_threads=args.num_threads,
            sample_rate=args.sample_rate,
            feature_dim=args.feat_dim,
            decoding_method=args.decoding_method,
            enable_endpoint_detection=args.use_endpoint != 0,
            rule1_min_trailing_silence=args.rule1_min_trailing_silence,
            rule2_min_trailing_silence=args.rule2_min_trailing_silence,
            rule3_min_utterance_length=args.rule3_min_utterance_length,
            provider=args.provider,
        )
    elif args.wenet_ctc:
        recognizer = sherpa_onnx.OnlineRecognizer.from_wenet_ctc(
            tokens=args.tokens,
            model=args.wenet_ctc,
            num_threads=args.num_threads,
            sample_rate=args.sample_rate,
            feature_dim=args.feat_dim,
            decoding_method=args.decoding_method,
            enable_endpoint_detection=args.use_endpoint != 0,
            rule1_min_trailing_silence=args.rule1_min_trailing_silence,
            rule2_min_trailing_silence=args.rule2_min_trailing_silence,
            rule3_min_utterance_length=args.rule3_min_utterance_length,
            provider=args.provider,
        )
    else:
        raise ValueError("Please provide a model")

    return recognizer


def format_timestamps(timestamps: List[float]) -> List[str]:
    return ["{:.3f}".format(t) for t in timestamps]


class StreamingServer(object):
    def __init__(
        self,
        recognizer: sherpa_onnx.OnlineRecognizer,
        nn_pool_size: int,
        max_wait_ms: float,
        max_batch_size: int,
        max_message_size: int,
        max_queue_size: int,
        max_active_connections: int,
        doc_root: str,
        certificate: Optional[str] = None,
    ):
        """
        Args:
          recognizer:
            An instance of online recognizer.
          nn_pool_size:
            Number of threads for the thread pool that is responsible for
            neural network computation and decoding.
          max_wait_ms:
            Max wait time in milliseconds in order to build a batch of
            `batch_size`.
          max_batch_size:
            Max batch size for inference.
          max_message_size:
            Max size in bytes per message.
          max_queue_size:
            Max number of messages in the queue for each connection.
          max_active_connections:
            Max number of active connections. Once number of active client
            equals to this limit, the server refuses to accept new connections.
          beam_search_params:
            Dictionary containing all the parameters for beam search.
          online_endpoint_config:
            Config for endpointing.
          doc_root:
            Path to the directory where files like index.html for the HTTP
            server locate.
          certificate:
            Optional. If not None, it will use secure websocket.
            You can use ./web/generate-certificate.py to generate
            it (the default generated filename is `cert.pem`).
        """
        self.recognizer = recognizer

        self.certificate = certificate
        self.http_server = HttpServer(doc_root)

        self.nn_pool = ThreadPoolExecutor(
            max_workers=nn_pool_size,
            thread_name_prefix="nn",
        )

        self.stream_queue = asyncio.Queue()

        self.max_wait_ms = max_wait_ms
        self.max_batch_size = max_batch_size
        self.max_message_size = max_message_size
        self.max_queue_size = max_queue_size
        self.max_active_connections = max_active_connections

        self.current_active_connections = 0

        self.sample_rate = int(recognizer.config.feat_config.sampling_rate)

    async def stream_consumer_task(self):
        """This function extracts streams from the queue, batches them up, sends
        them to the neural network model for computation and decoding.
        """
        while True:
            if self.stream_queue.empty():
                await asyncio.sleep(self.max_wait_ms / 1000)
                continue

            batch = []
            try:
                while len(batch) < self.max_batch_size:
                    item = self.stream_queue.get_nowait()

                    assert self.recognizer.is_ready(item[0])

                    batch.append(item)
            except asyncio.QueueEmpty:
                pass
            stream_list = [b[0] for b in batch]
            future_list = [b[1] for b in batch]

            loop = asyncio.get_running_loop()
            await loop.run_in_executor(
                self.nn_pool,
                self.recognizer.decode_streams,
                stream_list,
            )

            for f in future_list:
                self.stream_queue.task_done()
                f.set_result(None)

    async def compute_and_decode(
        self,
        stream: sherpa_onnx.OnlineStream,
    ) -> None:
        """Put the stream into the queue and wait it to be processed by the
        consumer task.

        Args:
          stream:
            The stream to be processed. Note: It is changed in-place.
        """
        loop = asyncio.get_running_loop()
        future = loop.create_future()
        await self.stream_queue.put((stream, future))
        await future

    async def process_request(
        self,
        path: str,
        request_headers: websockets.Headers,
    ) -> Optional[Tuple[http.HTTPStatus, websockets.Headers, bytes]]:
        if "sec-websocket-key" not in request_headers:
            # This is a normal HTTP request
            if path == "/":
                path = "/index.html"

            if path in ("/upload.html", "/offline_record.html"):
                response = r"""
<!doctype html><html><head>
<title>Speech recognition with next-gen Kaldi</title><body>
<h2>Only /streaming_record.html is available for the streaming server.<h2>
<br/>
<br/>
Go back to <a href="/streaming_record.html">/streaming_record.html</a>
</body></head></html>
"""
                found = True
                mime_type = "text/html"
            else:
                found, response, mime_type = self.http_server.process_request(path)

            if isinstance(response, str):
                response = response.encode("utf-8")

            if not found:
                status = http.HTTPStatus.NOT_FOUND
            else:
                status = http.HTTPStatus.OK
            header = {"Content-Type": mime_type}
            return status, header, response

        if self.current_active_connections < self.max_active_connections:
            self.current_active_connections += 1
            return None

        # Refuse new connections
        status = http.HTTPStatus.SERVICE_UNAVAILABLE  # 503
        header = {"Hint": "The server is overloaded. Please retry later."}
        response = b"The server is busy. Please retry later."

        return status, header, response

    async def run(self, port: int):
        task = asyncio.create_task(self.stream_consumer_task())

        if self.certificate:
            logging.info(f"Using certificate: {self.certificate}")
            ssl_context = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER)
            ssl_context.load_cert_chain(self.certificate)
        else:
            ssl_context = None
            logging.info("No certificate provided")

        async with websockets.serve(
            self.handle_connection,
            host="",
            port=port,
            max_size=self.max_message_size,
            max_queue=self.max_queue_size,
            process_request=self.process_request,
            ssl=ssl_context,
        ):
            ip_list = ["localhost"]
            if ssl_context:
                ip_list += ["0.0.0.0", "127.0.0.1"]
                ip_list.append(socket.gethostbyname(socket.gethostname()))
            proto = "http://" if ssl_context is None else "https://"
            s = "Please visit one of the following addresses:\n\n"
            for p in ip_list:
                s += "  " + proto + p + f":{port}" "\n"

            if not ssl_context:
                s += "\nSince you are not providing a certificate, you cannot "
                s += "use your microphone from within the browser using "
                s += "public IP addresses. Only localhost can be used."
                s += "You also cannot use 0.0.0.0 or 127.0.0.1"

            logging.info(s)

            await asyncio.Future()  # run forever

        await task  # not reachable

    async def handle_connection(
        self,
        socket: websockets.WebSocketServerProtocol,
    ):
        """Receive audio samples from the client, process it, and send
        decoding result back to the client.

        Args:
          socket:
            The socket for communicating with the client.
        """
        try:
            await self.handle_connection_impl(socket)
        except websockets.exceptions.ConnectionClosedError:
            logging.info(f"{socket.remote_address} disconnected")
        finally:
            # Decrement so that it can accept new connections
            self.current_active_connections -= 1

            logging.info(
                f"Disconnected: {socket.remote_address}. "
                f"Number of connections: {self.current_active_connections}/{self.max_active_connections}"  # noqa
            )

    async def handle_connection_impl(
        self,
        socket: websockets.WebSocketServerProtocol,
    ):
        """Receive audio samples from the client, process it, and send
        decoding result back to the client.

        Args:
          socket:
            The socket for communicating with the client.
        """
        logging.info(
            f"Connected: {socket.remote_address}. "
            f"Number of connections: {self.current_active_connections}/{self.max_active_connections}"  # noqa
        )

        stream = self.recognizer.create_stream()
        segment = 0

        while True:
            samples = await self.recv_audio_samples(socket)
            if samples is None:
                break

            # TODO(fangjun): At present, we assume the sampling rate
            # of the received audio samples equal to --sample-rate
            stream.accept_waveform(sample_rate=self.sample_rate, waveform=samples)

            while self.recognizer.is_ready(stream):
                await self.compute_and_decode(stream)
                result = self.recognizer.get_result(stream)

                message = {
                    "text": result,
                    "segment": segment,
                }
                if self.recognizer.is_endpoint(stream):
                    self.recognizer.reset(stream)
                    segment += 1

                await socket.send(json.dumps(message))

        tail_padding = np.zeros(int(self.sample_rate * 0.3)).astype(np.float32)
        stream.accept_waveform(sample_rate=self.sample_rate, waveform=tail_padding)
        stream.input_finished()
        while self.recognizer.is_ready(stream):
            await self.compute_and_decode(stream)

        result = self.recognizer.get_result(stream)

        message = {
            "text": result,
            "segment": segment,
        }

        await socket.send(json.dumps(message))

    async def recv_audio_samples(
        self,
        socket: websockets.WebSocketServerProtocol,
    ) -> Optional[np.ndarray]:
        """Receive a tensor from the client.

        Each message contains either a bytes buffer containing audio samples
        in 16 kHz or contains "Done" meaning the end of utterance.

        Args:
          socket:
            The socket for communicating with the client.
        Returns:
          Return a 1-D np.float32 tensor containing the audio samples or
          return None.
        """
        message = await socket.recv()
        if message == "Done":
            return None

        return np.frombuffer(message, dtype=np.float32)


def check_args(args):
    if args.encoder:
        assert Path(args.encoder).is_file(), f"{args.encoder} does not exist"

        assert Path(args.decoder).is_file(), f"{args.decoder} does not exist"

        assert Path(args.joiner).is_file(), f"{args.joiner} does not exist"

        assert args.paraformer_encoder is None, args.paraformer_encoder
        assert args.paraformer_decoder is None, args.paraformer_decoder
    elif args.paraformer_encoder:
        assert Path(
            args.paraformer_encoder
        ).is_file(), f"{args.paraformer_encoder} does not exist"

        assert Path(
            args.paraformer_decoder
        ).is_file(), f"{args.paraformer_decoder} does not exist"
    elif args.wenet_ctc:
        assert Path(args.wenet_ctc).is_file(), f"{args.wenet_ctc} does not exist"
    else:
        raise ValueError("Please provide a model")

    if not Path(args.tokens).is_file():
        raise ValueError(f"{args.tokens} does not exist")

    if args.decoding_method not in (
        "greedy_search",
        "modified_beam_search",
    ):
        raise ValueError(f"Unsupported decoding method {args.decoding_method}")

    if args.decoding_method == "modified_beam_search":
        assert args.num_active_paths > 0, args.num_active_paths


def main():
    args = get_args()
    logging.info(vars(args))
    check_args(args)

    recognizer = create_recognizer(args)

    port = args.port
    nn_pool_size = args.nn_pool_size
    max_batch_size = args.max_batch_size
    max_wait_ms = args.max_wait_ms
    max_message_size = args.max_message_size
    max_queue_size = args.max_queue_size
    max_active_connections = args.max_active_connections
    certificate = args.certificate
    doc_root = args.doc_root

    if certificate and not Path(certificate).is_file():
        raise ValueError(f"{certificate} does not exist")

    if not Path(doc_root).is_dir():
        raise ValueError(f"Directory {doc_root} does not exist")

    server = StreamingServer(
        recognizer=recognizer,
        nn_pool_size=nn_pool_size,
        max_batch_size=max_batch_size,
        max_wait_ms=max_wait_ms,
        max_message_size=max_message_size,
        max_queue_size=max_queue_size,
        max_active_connections=max_active_connections,
        certificate=certificate,
        doc_root=doc_root,
    )
    asyncio.run(server.run(port))


if __name__ == "__main__":
    log_filename = "log/log-streaming-server"
    setup_logger(log_filename)
    main()