Program.cs
13.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
// Copyright (c) 2023 Xiaomi Corporation
// Copyright (c) 2023 by manyeyes
//
// This file shows how to use a non-streaming model to decode files
// Please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
// to download non-streaming models
using CommandLine;
using CommandLine.Text;
using SherpaOnnx;
class OfflineDecodeFiles
{
class Options
{
[Option("sample-rate", Required = false, Default = 16000, HelpText = "Sample rate of the data used to train the model")]
public int SampleRate { get; set; } = 16000;
[Option("feat-dim", Required = false, Default = 80, HelpText = "Dimension of the features used to train the model")]
public int FeatureDim { get; set; } = 80;
[Option(Required = false, HelpText = "Path to tokens.txt")]
public string Tokens { get; set; } = string.Empty;
[Option(Required = false, Default = "", HelpText = "Path to transducer encoder.onnx. Used only for transducer models")]
public string Encoder { get; set; } = string.Empty;
[Option(Required = false, Default = "", HelpText = "Path to transducer decoder.onnx. Used only for transducer models")]
public string Decoder { get; set; } = string.Empty;
[Option(Required = false, Default = "", HelpText = "Path to transducer joiner.onnx. Used only for transducer models")]
public string Joiner { get; set; } = string.Empty;
[Option("model-type", Required = false, Default = "", HelpText = "model type")]
public string ModelType { get; set; } = string.Empty;
[Option("fire-red-asr-encoder", Required = false, Default = "", HelpText = "Path to FireRedAsr encoder.int8.onnx. Used only for FireRedAsr models")]
public string FireRedAsrEncoder { get; set; } = string.Empty;
[Option("fire-red-asr-decoder", Required = false, Default = "", HelpText = "Path to FireRedAsr decoder.int8.onnx. Used only for FireRedAsr models")]
public string FireRedAsrDecoder { get; set; } = string.Empty;
[Option("whisper-encoder", Required = false, Default = "", HelpText = "Path to whisper encoder.onnx. Used only for whisper models")]
public string WhisperEncoder { get; set; } = string.Empty;
[Option("whisper-decoder", Required = false, Default = "", HelpText = "Path to whisper decoder.onnx. Used only for whisper models")]
public string WhisperDecoder { get; set; } = string.Empty;
[Option("whisper-language", Required = false, Default = "", HelpText = "Language of the input file. Can be empty")]
public string WhisperLanguage { get; set; } = string.Empty;
[Option("whisper-task", Required = false, Default = "transcribe", HelpText = "transcribe or translate")]
public string WhisperTask { get; set; } = "transcribe";
[Option("moonshine-preprocessor", Required = false, Default = "", HelpText = "Path to preprocess.onnx. Used only for Moonshine models")]
public string MoonshinePreprocessor { get; set; } = string.Empty;
[Option("moonshine-encoder", Required = false, Default = "", HelpText = "Path to encode.onnx. Used only for Moonshine models")]
public string MoonshineEncoder { get; set; } = string.Empty;
[Option("moonshine-uncached-decoder", Required = false, Default = "", HelpText = "Path to uncached_decode.onnx. Used only for Moonshine models")]
public string MoonshineUncachedDecoder { get; set; } = string.Empty;
[Option("moonshine-cached-decoder", Required = false, Default = "", HelpText = "Path to cached_decode.onnx. Used only for Moonshine models")]
public string MoonshineCachedDecoder { get; set; } = string.Empty;
[Option("tdnn-model", Required = false, Default = "", HelpText = "Path to tdnn yesno model")]
public string TdnnModel { get; set; } = string.Empty;
[Option(Required = false, HelpText = "Path to model.onnx. Used only for paraformer models")]
public string Paraformer { get; set; } = string.Empty;
[Option("nemo-ctc", Required = false, HelpText = "Path to model.onnx. Used only for NeMo CTC models")]
public string NeMoCtc { get; set; } = string.Empty;
[Option("dolphin-model", Required = false, Default = "", HelpText = "Path to dolphin ctc model")]
public string DolphinModel { get; set; } = string.Empty;
[Option("telespeech-ctc", Required = false, HelpText = "Path to model.onnx. Used only for TeleSpeech CTC models")]
public string TeleSpeechCtc { get; set; } = string.Empty;
[Option("sense-voice-model", Required = false, HelpText = "Path to model.onnx. Used only for SenseVoice CTC models")]
public string SenseVoiceModel { get; set; } = string.Empty;
[Option("sense-voice-use-itn", Required = false, HelpText = "1 to use inverse text normalization for sense voice.")]
public int SenseVoiceUseItn { get; set; } = 1;
[Option("num-threads", Required = false, Default = 1, HelpText = "Number of threads for computation")]
public int NumThreads { get; set; } = 1;
[Option("decoding-method", Required = false, Default = "greedy_search",
HelpText = "Valid decoding methods are: greedy_search, modified_beam_search")]
public string DecodingMethod { get; set; } = "greedy_search";
[Option("rule-fsts", Required = false, Default = "",
HelpText = "If not empty, path to rule fst for inverse text normalization")]
public string RuleFsts { get; set; } = string.Empty;
[Option("max-active-paths", Required = false, Default = 4,
HelpText = @"Used only when --decoding--method is modified_beam_search.
It specifies number of active paths to keep during the search")]
public int MaxActivePaths { get; set; } = 4;
[Option("hotwords-file", Required = false, Default = "", HelpText = "Path to hotwords.txt")]
public string HotwordsFile { get; set; } = string.Empty;
[Option("hotwords-score", Required = false, Default = 1.5F, HelpText = "hotwords score")]
public float HotwordsScore { get; set; } = 1.5F;
[Option("files", Required = true, HelpText = "Audio files for decoding")]
public IEnumerable<string> Files { get; set; } = new string[] { };
}
static void Main(string[] args)
{
var parser = new CommandLine.Parser(with => with.HelpWriter = null);
var parserResult = parser.ParseArguments<Options>(args);
parserResult
.WithParsed<Options>(options => Run(options))
.WithNotParsed(errs => DisplayHelp(parserResult, errs));
}
private static void DisplayHelp<T>(ParserResult<T> result, IEnumerable<Error> errs)
{
var usage = @"
# Zipformer
dotnet run \
--tokens=./sherpa-onnx-zipformer-en-2023-04-01/tokens.txt \
--encoder=./sherpa-onnx-zipformer-en-2023-04-01/encoder-epoch-99-avg-1.onnx \
--decoder=./sherpa-onnx-zipformer-en-2023-04-01/decoder-epoch-99-avg-1.onnx \
--joiner=./sherpa-onnx-zipformer-en-2023-04-01/joiner-epoch-99-avg-1.onnx \
--files ./sherpa-onnx-zipformer-en-2023-04-01/test_wavs/0.wav \
./sherpa-onnx-zipformer-en-2023-04-01/test_wavs/1.wav \
./sherpa-onnx-zipformer-en-2023-04-01/test_wavs/8k.wav
Please refer to
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-transducer/index.html
to download pre-trained non-streaming zipformer models.
# Paraformer
dotnet run \
--tokens=./sherpa-onnx-paraformer-zh-2023-09-14/tokens.txt \
--paraformer=./sherpa-onnx-paraformer-zh-2023-09-14/model.onnx \
--files ./sherpa-onnx-zipformer-en-2023-04-01/test_wavs/0.wav \
./sherpa-onnx-paraformer-zh-2023-09-14/test_wavs/0.wav \
./sherpa-onnx-paraformer-zh-2023-09-14/test_wavs/1.wav \
./sherpa-onnx-paraformer-zh-2023-09-14/test_wavs/2.wav \
./sherpa-onnx-paraformer-zh-2023-09-14/test_wavs/8k.wav
Please refer to
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-paraformer/index.html
to download pre-trained paraformer models
# NeMo CTC
dotnet run \
--tokens=./sherpa-onnx-nemo-ctc-en-conformer-medium/tokens.txt \
--nemo-ctc=./sherpa-onnx-nemo-ctc-en-conformer-medium/model.onnx \
--num-threads=1 \
--files ./sherpa-onnx-nemo-ctc-en-conformer-medium/test_wavs/0.wav \
./sherpa-onnx-nemo-ctc-en-conformer-medium/test_wavs/1.wav \
./sherpa-onnx-nemo-ctc-en-conformer-medium/test_wavs/8k.wav
Please refer to
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-ctc/index.html
to download pre-trained paraformer models
# Whisper
dotnet run \
--whisper-encoder=./sherpa-onnx-whisper-tiny.en/tiny.en-encoder.onnx \
--whisper-decoder=./sherpa-onnx-whisper-tiny.en/tiny.en-decoder.onnx \
--tokens=./sherpa-onnx-whisper-tiny.en/tiny.en-tokens.txt \
--files ./sherpa-onnx-whisper-tiny.en/test_wavs/0.wav \
./sherpa-onnx-whisper-tiny.en/test_wavs/1.wav \
./sherpa-onnx-whisper-tiny.en/test_wavs/8k.wav
Please refer to
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/whisper/tiny.en.html
to download pre-trained whisper models.
# Tdnn yesno
dotnet run \
--sample-rate=8000 \
--feat-dim=23 \
--tokens=./sherpa-onnx-tdnn-yesno/tokens.txt \
--tdnn-model=./sherpa-onnx-tdnn-yesno/model-epoch-14-avg-2.onnx \
--files ./sherpa-onnx-tdnn-yesno/test_wavs/0_0_0_1_0_0_0_1.wav \
./sherpa-onnx-tdnn-yesno/test_wavs/0_0_1_0_0_0_1_0.wav \
./sherpa-onnx-tdnn-yesno/test_wavs/0_0_1_0_0_1_1_1.wav \
./sherpa-onnx-tdnn-yesno/test_wavs/0_0_1_0_1_0_0_1.wav \
./sherpa-onnx-tdnn-yesno/test_wavs/0_0_1_1_0_0_0_1.wav \
./sherpa-onnx-tdnn-yesno/test_wavs/0_0_1_1_0_1_1_0.wav
Please refer to
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-ctc/yesno/index.html
to download pre-trained Tdnn models.
";
var helpText = HelpText.AutoBuild(result, h =>
{
h.AdditionalNewLineAfterOption = false;
h.Heading = usage;
h.Copyright = "Copyright (c) 2023 Xiaomi Corporation";
return HelpText.DefaultParsingErrorsHandler(result, h);
}, e => e);
Console.WriteLine(helpText);
}
private static void Run(Options options)
{
OfflineRecognizerConfig config = new OfflineRecognizerConfig();
config.FeatConfig.SampleRate = options.SampleRate;
config.FeatConfig.FeatureDim = options.FeatureDim;
config.ModelConfig.Tokens = options.Tokens;
if (!string.IsNullOrEmpty(options.Encoder))
{
// this is a transducer model
config.ModelConfig.Transducer.Encoder = options.Encoder;
config.ModelConfig.Transducer.Decoder = options.Decoder;
config.ModelConfig.Transducer.Joiner = options.Joiner;
}
else if (!string.IsNullOrEmpty(options.Paraformer))
{
config.ModelConfig.Paraformer.Model = options.Paraformer;
}
else if (!string.IsNullOrEmpty(options.NeMoCtc))
{
config.ModelConfig.NeMoCtc.Model = options.NeMoCtc;
}
else if (!string.IsNullOrEmpty(options.DolphinModel))
{
config.ModelConfig.Dolphin.Model = options.DolphinModel;
}
else if (!string.IsNullOrEmpty(options.TeleSpeechCtc))
{
config.ModelConfig.TeleSpeechCtc = options.TeleSpeechCtc;
}
else if (!string.IsNullOrEmpty(options.WhisperEncoder))
{
config.ModelConfig.Whisper.Encoder = options.WhisperEncoder;
config.ModelConfig.Whisper.Decoder = options.WhisperDecoder;
config.ModelConfig.Whisper.Language = options.WhisperLanguage;
config.ModelConfig.Whisper.Task = options.WhisperTask;
}
else if (!string.IsNullOrEmpty(options.TdnnModel))
{
config.ModelConfig.Tdnn.Model = options.TdnnModel;
}
else if (!string.IsNullOrEmpty(options.SenseVoiceModel))
{
config.ModelConfig.SenseVoice.Model = options.SenseVoiceModel;
config.ModelConfig.SenseVoice.UseInverseTextNormalization = options.SenseVoiceUseItn;
}
else if (!string.IsNullOrEmpty(options.MoonshinePreprocessor))
{
config.ModelConfig.Moonshine.Preprocessor = options.MoonshinePreprocessor;
config.ModelConfig.Moonshine.Encoder = options.MoonshineEncoder;
config.ModelConfig.Moonshine.UncachedDecoder = options.MoonshineUncachedDecoder;
config.ModelConfig.Moonshine.CachedDecoder = options.MoonshineCachedDecoder;
}
else if (!string.IsNullOrEmpty(options.FireRedAsrEncoder))
{
config.ModelConfig.FireRedAsr.Encoder = options.FireRedAsrEncoder;
config.ModelConfig.FireRedAsr.Decoder = options.FireRedAsrDecoder;
}
else
{
Console.WriteLine("Please provide a model");
return;
}
config.ModelConfig.ModelType = options.ModelType;
config.DecodingMethod = options.DecodingMethod;
config.MaxActivePaths = options.MaxActivePaths;
config.HotwordsFile = options.HotwordsFile;
config.HotwordsScore = options.HotwordsScore;
config.RuleFsts = options.RuleFsts;
config.ModelConfig.Debug = 0;
var recognizer = new OfflineRecognizer(config);
var files = options.Files.ToArray();
// We create a separate stream for each file
var streams = new List<OfflineStream>();
streams.EnsureCapacity(files.Length);
for (int i = 0; i != files.Length; ++i)
{
var s = recognizer.CreateStream();
WaveReader waveReader = new WaveReader(files[i]);
s.AcceptWaveform(waveReader.SampleRate, waveReader.Samples);
streams.Add(s);
}
recognizer.Decode(streams);
// display results
for (int i = 0; i != files.Length; ++i)
{
var r = streams[i].Result;
Console.WriteLine("--------------------");
Console.WriteLine(files[i]);
Console.WriteLine("Text: {0}", r.Text);
Console.WriteLine("Tokens: [{0}]", string.Join(", ", r.Tokens));
if (r.Timestamps != null && r.Timestamps.Length > 0) {
Console.Write("Timestamps: [");
var sep = string.Empty;
for (int k = 0; k != r.Timestamps.Length; ++k)
{
Console.Write("{0}{1}", sep, r.Timestamps[k].ToString("0.00"));
sep = ", ";
}
Console.WriteLine("]");
}
}
Console.WriteLine("--------------------");
}
}