SubtitleViewModel.swift
4.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
//
// SubtitleViewModel.swift
// SherpaOnnxSubtitle
//
// Created by knight on 2023/9/23.
//
import AVFoundation
import PhotosUI
import SwiftUI
enum LoadState {
case initial
case loading
case loaded(Audio)
case done
case failed
}
class SubtitleViewModel: ObservableObject {
var modelType = "whisper"
let sampleRate = 16000
var modelConfig: SherpaOnnxOfflineModelConfig?
// modelType = "paraformer"
var recognizer: SherpaOnnxOfflineRecognizer?
var vadModelConfig: SherpaOnnxVadModelConfig?
var vad: SherpaOnnxVoiceActivityDetectorWrapper?
@Published var loadState: LoadState = .initial
@Published var selectedItem: PhotosPickerItem? = nil
@Published var importNow: Bool = false {
didSet {
loadState = .loading
}
}
@Published var exportNow: Bool = false
var srtName: String = "unknown.srt"
var content: String = ""
var srtDocument: Document {
let content = content.data(using: .utf8)
return Document(data: content)
}
var hasAudio: Bool {
return selectedItem != nil
}
init() {
if modelType == "whisper" {
// for English
self.modelConfig = getNonStreamingWhisperTinyEn()
} else if modelType == "paraformer" {
// for Chinese
self.modelConfig = getNonStreamingZhParaformer20230914()
} else {
print("Please specify a supported modelType \(modelType)")
return
}
let featConfig = sherpaOnnxFeatureConfig(
sampleRate: sampleRate,
featureDim: 80
)
guard let modelConfig else {
return
}
var config = sherpaOnnxOfflineRecognizerConfig(
featConfig: featConfig,
modelConfig: modelConfig
)
recognizer = SherpaOnnxOfflineRecognizer(config: &config)
let sileroVadConfig = sherpaOnnxSileroVadModelConfig(
model: getResource("silero_vad", "onnx")
)
self.vadModelConfig = sherpaOnnxVadModelConfig(sileroVad: sileroVadConfig)
guard var vadModelConfig else {
return
}
vad = SherpaOnnxVoiceActivityDetectorWrapper(
config: &vadModelConfig, buffer_size_in_seconds: 120
)
}
func restoreState() {
loadState = .initial
}
func generateSRT(from file: URL) {
print("gen srt from: \(file)")
content = ""
// restore state
defer {
loadState = .done
}
guard let recognizer else {
return
}
guard let vadModelConfig else {
return
}
guard let vad else {
return
}
do {
let audioFile = try AVAudioFile(forReading: file)
let audioFormat = audioFile.processingFormat
assert(audioFormat.sampleRate == Double(sampleRate))
assert(audioFormat.channelCount == 1)
assert(audioFormat.commonFormat == AVAudioCommonFormat.pcmFormatFloat32)
let audioFrameCount = UInt32(audioFile.length)
let audioFileBuffer = AVAudioPCMBuffer(pcmFormat: audioFormat, frameCapacity: audioFrameCount)
try audioFile.read(into: audioFileBuffer!)
var array: [Float]! = audioFileBuffer?.array()
let windowSize = Int(vadModelConfig.silero_vad.window_size)
var segments: [SpeechSegment] = []
while array.count > windowSize {
// todo(fangjun): avoid extra copies here
vad.acceptWaveform(samples: [Float](array[0 ..< windowSize]))
array = [Float](array[windowSize ..< array.count])
while !vad.isEmpty() {
let s = vad.front()
vad.pop()
let result = recognizer.decode(samples: s.samples)
segments.append(
SpeechSegment(
start: Float(s.start) / Float(sampleRate),
duration: Float(s.samples.count) / Float(sampleRate),
text: result.text
))
print(segments.last!)
}
}
content = zip(segments.indices, segments).map { index, element in
"\(index + 1)\n\(element)"
}.joined(separator: "\n\n")
} catch {
print("error: \(error.localizedDescription)")
}
exportNow = true
let last = file.lastPathComponent
srtName = "\(last).srt"
}
}