offline-tts-vits-model.cc
5.0 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
// sherpa-onnx/csrc/offline-tts-vits-model.cc
//
// Copyright (c) 2023 Xiaomi Corporation
#include "sherpa-onnx/csrc/offline-tts-vits-model.h"
#include <algorithm>
#include <string>
#include <utility>
#include <vector>
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
#include "sherpa-onnx/csrc/session.h"
namespace sherpa_onnx {
class OfflineTtsVitsModel::Impl {
public:
explicit Impl(const OfflineTtsModelConfig &config)
: config_(config),
env_(ORT_LOGGING_LEVEL_WARNING),
sess_opts_(GetSessionOptions(config)),
allocator_{} {
auto buf = ReadFile(config.vits.model);
Init(buf.data(), buf.size());
}
Ort::Value Run(Ort::Value x, int64_t sid, float speed) {
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::vector<int64_t> x_shape = x.GetTensorTypeAndShapeInfo().GetShape();
if (x_shape[0] != 1) {
SHERPA_ONNX_LOGE("Support only batch_size == 1. Given: %d",
static_cast<int32_t>(x_shape[0]));
exit(-1);
}
int64_t len = x_shape[1];
int64_t len_shape = 1;
Ort::Value x_length =
Ort::Value::CreateTensor(memory_info, &len, 1, &len_shape, 1);
int64_t scale_shape = 1;
float noise_scale = config_.vits.noise_scale;
float length_scale = config_.vits.length_scale;
float noise_scale_w = config_.vits.noise_scale_w;
if (speed != 1 && speed > 0) {
length_scale = 1. / speed;
}
Ort::Value noise_scale_tensor =
Ort::Value::CreateTensor(memory_info, &noise_scale, 1, &scale_shape, 1);
Ort::Value length_scale_tensor = Ort::Value::CreateTensor(
memory_info, &length_scale, 1, &scale_shape, 1);
Ort::Value noise_scale_w_tensor = Ort::Value::CreateTensor(
memory_info, &noise_scale_w, 1, &scale_shape, 1);
Ort::Value sid_tensor =
Ort::Value::CreateTensor(memory_info, &sid, 1, &scale_shape, 1);
std::vector<Ort::Value> inputs;
inputs.reserve(6);
inputs.push_back(std::move(x));
inputs.push_back(std::move(x_length));
inputs.push_back(std::move(noise_scale_tensor));
inputs.push_back(std::move(length_scale_tensor));
inputs.push_back(std::move(noise_scale_w_tensor));
if (input_names_.size() == 6 && input_names_.back() == "sid") {
inputs.push_back(std::move(sid_tensor));
}
auto out =
sess_->Run({}, input_names_ptr_.data(), inputs.data(), inputs.size(),
output_names_ptr_.data(), output_names_ptr_.size());
return std::move(out[0]);
}
int32_t SampleRate() const { return sample_rate_; }
bool AddBlank() const { return add_blank_; }
std::string Punctuations() const { return punctuations_; }
std::string Language() const { return language_; }
int32_t NumSpeakers() const { return num_speakers_; }
private:
void Init(void *model_data, size_t model_data_length) {
sess_ = std::make_unique<Ort::Session>(env_, model_data, model_data_length,
sess_opts_);
GetInputNames(sess_.get(), &input_names_, &input_names_ptr_);
GetOutputNames(sess_.get(), &output_names_, &output_names_ptr_);
// get meta data
Ort::ModelMetadata meta_data = sess_->GetModelMetadata();
if (config_.debug) {
std::ostringstream os;
os << "---vits model---\n";
PrintModelMetadata(os, meta_data);
SHERPA_ONNX_LOGE("%s\n", os.str().c_str());
}
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
SHERPA_ONNX_READ_META_DATA(sample_rate_, "sample_rate");
SHERPA_ONNX_READ_META_DATA(add_blank_, "add_blank");
SHERPA_ONNX_READ_META_DATA(num_speakers_, "n_speakers");
SHERPA_ONNX_READ_META_DATA_STR(punctuations_, "punctuation");
SHERPA_ONNX_READ_META_DATA_STR(language_, "language");
}
private:
OfflineTtsModelConfig config_;
Ort::Env env_;
Ort::SessionOptions sess_opts_;
Ort::AllocatorWithDefaultOptions allocator_;
std::unique_ptr<Ort::Session> sess_;
std::vector<std::string> input_names_;
std::vector<const char *> input_names_ptr_;
std::vector<std::string> output_names_;
std::vector<const char *> output_names_ptr_;
int32_t sample_rate_;
int32_t add_blank_;
int32_t num_speakers_;
std::string punctuations_;
std::string language_;
};
OfflineTtsVitsModel::OfflineTtsVitsModel(const OfflineTtsModelConfig &config)
: impl_(std::make_unique<Impl>(config)) {}
OfflineTtsVitsModel::~OfflineTtsVitsModel() = default;
Ort::Value OfflineTtsVitsModel::Run(Ort::Value x, int64_t sid /*=0*/,
float speed /*= 1.0*/) {
return impl_->Run(std::move(x), sid, speed);
}
int32_t OfflineTtsVitsModel::SampleRate() const { return impl_->SampleRate(); }
bool OfflineTtsVitsModel::AddBlank() const { return impl_->AddBlank(); }
std::string OfflineTtsVitsModel::Punctuations() const {
return impl_->Punctuations();
}
std::string OfflineTtsVitsModel::Language() const { return impl_->Language(); }
int32_t OfflineTtsVitsModel::NumSpeakers() const {
return impl_->NumSpeakers();
}
} // namespace sherpa_onnx