sherpa_onnx.go
19.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
/*
Speech recognition with [Next-gen Kaldi].
[sherpa-onnx] is an open-source speech recognition framework for [Next-gen Kaldi].
It depends only on [onnxruntime], supporting both streaming and non-streaming
speech recognition.
It does not need to access the network during recognition and everything
runs locally.
It supports a variety of platforms, such as Linux (x86_64, aarch64, arm),
Windows (x86_64, x86), macOS (x86_64, arm64), etc.
Usage examples:
1. Real-time speech recognition from a microphone
Please see
https://github.com/k2-fsa/sherpa-onnx/tree/master/go-api-examples/real-time-speech-recognition-from-microphone
2. Decode files using a non-streaming model
Please see
https://github.com/k2-fsa/sherpa-onnx/tree/master/go-api-examples/non-streaming-decode-files
3. Decode files using a streaming model
Please see
https://github.com/k2-fsa/sherpa-onnx/tree/master/go-api-examples/streaming-decode-files
4. Convert text to speech using a non-streaming model
Please see
https://github.com/k2-fsa/sherpa-onnx/tree/master/go-api-examples/non-streaming-tts
[sherpa-onnx]: https://github.com/k2-fsa/sherpa-onnx
[onnxruntime]: https://github.com/microsoft/onnxruntime
[Next-gen Kaldi]: https://github.com/k2-fsa/
*/
package sherpa_onnx
// #include <stdlib.h>
// #include "c-api.h"
import "C"
import "unsafe"
// Configuration for online/streaming transducer models
//
// Please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/online-transducer/index.html
// to download pre-trained models
type OnlineTransducerModelConfig struct {
Encoder string // Path to the encoder model, e.g., encoder.onnx or encoder.int8.onnx
Decoder string // Path to the decoder model.
Joiner string // Path to the joiner model.
}
// Configuration for online/streaming paraformer models
//
// Please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/online-paraformer/index.html
// to download pre-trained models
type OnlineParaformerModelConfig struct {
Encoder string // Path to the encoder model, e.g., encoder.onnx or encoder.int8.onnx
Decoder string // Path to the decoder model.
}
// Configuration for online/streaming models
//
// Please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/online-transducer/index.html
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/online-paraformer/index.html
// to download pre-trained models
type OnlineModelConfig struct {
Transducer OnlineTransducerModelConfig
Paraformer OnlineParaformerModelConfig
Tokens string // Path to tokens.txt
NumThreads int // Number of threads to use for neural network computation
Provider string // Optional. Valid values are: cpu, cuda, coreml
Debug int // 1 to show model meta information while loading it.
ModelType string // Optional. You can specify it for faster model initialization
}
// Configuration for the feature extractor
type FeatureConfig struct {
// Sample rate expected by the model. It is 16000 for all
// pre-trained models provided by us
SampleRate int
// Feature dimension expected by the model. It is 80 for all
// pre-trained models provided by us
FeatureDim int
}
// Configuration for the online/streaming recognizer.
type OnlineRecognizerConfig struct {
FeatConfig FeatureConfig
ModelConfig OnlineModelConfig
// Valid decoding methods: greedy_search, modified_beam_search
DecodingMethod string
// Used only when DecodingMethod is modified_beam_search. It specifies
// the maximum number of paths to keep during the search
MaxActivePaths int
EnableEndpoint int // 1 to enable endpoint detection.
// Please see
// https://k2-fsa.github.io/sherpa/ncnn/endpoint.html
// for the meaning of Rule1MinTrailingSilence, Rule2MinTrailingSilence
// and Rule3MinUtteranceLength.
Rule1MinTrailingSilence float32
Rule2MinTrailingSilence float32
Rule3MinUtteranceLength float32
}
// It contains the recognition result for a online stream.
type OnlineRecognizerResult struct {
Text string
}
// The online recognizer class. It wraps a pointer from C.
type OnlineRecognizer struct {
impl *C.struct_SherpaOnnxOnlineRecognizer
}
// The online stream class. It wraps a pointer from C.
type OnlineStream struct {
impl *C.struct_SherpaOnnxOnlineStream
}
// Free the internal pointer inside the recognizer to avoid memory leak.
func DeleteOnlineRecognizer(recognizer *OnlineRecognizer) {
C.DestroyOnlineRecognizer(recognizer.impl)
recognizer.impl = nil
}
// The user is responsible to invoke [DeleteOnlineRecognizer]() to free
// the returned recognizer to avoid memory leak
func NewOnlineRecognizer(config *OnlineRecognizerConfig) *OnlineRecognizer {
c := C.struct_SherpaOnnxOnlineRecognizerConfig{}
c.feat_config.sample_rate = C.int(config.FeatConfig.SampleRate)
c.feat_config.feature_dim = C.int(config.FeatConfig.FeatureDim)
c.model_config.transducer.encoder = C.CString(config.ModelConfig.Transducer.Encoder)
defer C.free(unsafe.Pointer(c.model_config.transducer.encoder))
c.model_config.transducer.decoder = C.CString(config.ModelConfig.Transducer.Decoder)
defer C.free(unsafe.Pointer(c.model_config.transducer.decoder))
c.model_config.transducer.joiner = C.CString(config.ModelConfig.Transducer.Joiner)
defer C.free(unsafe.Pointer(c.model_config.transducer.joiner))
c.model_config.paraformer.encoder = C.CString(config.ModelConfig.Paraformer.Encoder)
defer C.free(unsafe.Pointer(c.model_config.paraformer.encoder))
c.model_config.paraformer.decoder = C.CString(config.ModelConfig.Paraformer.Decoder)
defer C.free(unsafe.Pointer(c.model_config.paraformer.decoder))
c.model_config.tokens = C.CString(config.ModelConfig.Tokens)
defer C.free(unsafe.Pointer(c.model_config.tokens))
c.model_config.num_threads = C.int(config.ModelConfig.NumThreads)
c.model_config.provider = C.CString(config.ModelConfig.Provider)
defer C.free(unsafe.Pointer(c.model_config.provider))
c.model_config.debug = C.int(config.ModelConfig.Debug)
c.model_config.model_type = C.CString(config.ModelConfig.ModelType)
defer C.free(unsafe.Pointer(c.model_config.model_type))
c.decoding_method = C.CString(config.DecodingMethod)
defer C.free(unsafe.Pointer(c.decoding_method))
c.max_active_paths = C.int(config.MaxActivePaths)
c.enable_endpoint = C.int(config.EnableEndpoint)
c.rule1_min_trailing_silence = C.float(config.Rule1MinTrailingSilence)
c.rule2_min_trailing_silence = C.float(config.Rule2MinTrailingSilence)
c.rule3_min_utterance_length = C.float(config.Rule3MinUtteranceLength)
recognizer := &OnlineRecognizer{}
recognizer.impl = C.CreateOnlineRecognizer(&c)
return recognizer
}
// Delete the internal pointer inside the stream to avoid memory leak.
func DeleteOnlineStream(stream *OnlineStream) {
C.DestroyOnlineStream(stream.impl)
stream.impl = nil
}
// The user is responsible to invoke [DeleteOnlineStream]() to free
// the returned stream to avoid memory leak
func NewOnlineStream(recognizer *OnlineRecognizer) *OnlineStream {
stream := &OnlineStream{}
stream.impl = C.CreateOnlineStream(recognizer.impl)
return stream
}
// Input audio samples for the stream.
//
// sampleRate is the actual sample rate of the input audio samples. If it
// is different from the sample rate expected by the feature extractor, we will
// do resampling inside.
//
// samples contains audio samples. Each sample is in the range [-1, 1]
func (s *OnlineStream) AcceptWaveform(sampleRate int, samples []float32) {
C.AcceptWaveform(s.impl, C.int(sampleRate), (*C.float)(&samples[0]), C.int(len(samples)))
}
// Signal that there will be no incoming audio samples.
// After calling this function, you cannot call [OnlineStream.AcceptWaveform] any longer.
//
// The main purpose of this function is to flush the remaining audio samples
// buffered inside for feature extraction.
func (s *OnlineStream) InputFinished() {
C.InputFinished(s.impl)
}
// Check whether the stream has enough feature frames for decoding.
// Return true if this stream is ready for decoding. Return false otherwise.
//
// You will usually use it like below:
//
// for recognizer.IsReady(s) {
// recognizer.Decode(s)
// }
func (recognizer *OnlineRecognizer) IsReady(s *OnlineStream) bool {
return C.IsOnlineStreamReady(recognizer.impl, s.impl) == 1
}
// Return true if an endpoint is detected.
//
// You usually use it like below:
//
// if recognizer.IsEndpoint(s) {
// // do your own stuff after detecting an endpoint
//
// recognizer.Reset(s)
// }
func (recognizer *OnlineRecognizer) IsEndpoint(s *OnlineStream) bool {
return C.IsEndpoint(recognizer.impl, s.impl) == 1
}
// After calling this function, the internal neural network model states
// are reset and IsEndpoint(s) would return false. GetResult(s) would also
// return an empty string.
func (recognizer *OnlineRecognizer) Reset(s *OnlineStream) {
C.Reset(recognizer.impl, s.impl)
}
// Decode the stream. Before calling this function, you have to ensure
// that recognizer.IsReady(s) returns true. Otherwise, you will be SAD.
//
// You usually use it like below:
//
// for recognizer.IsReady(s) {
// recognizer.Decode(s)
// }
func (recognizer *OnlineRecognizer) Decode(s *OnlineStream) {
C.DecodeOnlineStream(recognizer.impl, s.impl)
}
// Decode multiple streams in parallel, i.e., in batch.
// You have to ensure that each stream is ready for decoding. Otherwise,
// you will be SAD.
func (recognizer *OnlineRecognizer) DecodeStreams(s []*OnlineStream) {
ss := make([]*C.struct_SherpaOnnxOnlineStream, len(s))
for i, v := range s {
ss[i] = v.impl
}
C.DecodeMultipleOnlineStreams(recognizer.impl, &ss[0], C.int(len(s)))
}
// Get the current result of stream since the last invoke of Reset()
func (recognizer *OnlineRecognizer) GetResult(s *OnlineStream) *OnlineRecognizerResult {
p := C.GetOnlineStreamResult(recognizer.impl, s.impl)
defer C.DestroyOnlineRecognizerResult(p)
result := &OnlineRecognizerResult{}
result.Text = C.GoString(p.text)
return result
}
// Configuration for offline/non-streaming transducer.
//
// Please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-transducer/index.html
// to download pre-trained models
type OfflineTransducerModelConfig struct {
Encoder string // Path to the encoder model, i.e., encoder.onnx or encoder.int8.onnx
Decoder string // Path to the decoder model
Joiner string // Path to the joiner model
}
// Configuration for offline/non-streaming paraformer.
//
// please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-paraformer/index.html
// to download pre-trained models
type OfflineParaformerModelConfig struct {
Model string // Path to the model, e.g., model.onnx or model.int8.onnx
}
// Configuration for offline/non-streaming NeMo CTC models.
//
// Please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-ctc/index.html
// to download pre-trained models
type OfflineNemoEncDecCtcModelConfig struct {
Model string // Path to the model, e.g., model.onnx or model.int8.onnx
}
type OfflineWhisperModelConfig struct {
Encoder string
Decoder string
}
type OfflineTdnnModelConfig struct {
Model string
}
// Configuration for offline LM.
type OfflineLMConfig struct {
Model string // Path to the model
Scale float32 // scale for LM score
}
type OfflineModelConfig struct {
Transducer OfflineTransducerModelConfig
Paraformer OfflineParaformerModelConfig
NemoCTC OfflineNemoEncDecCtcModelConfig
Whisper OfflineWhisperModelConfig
Tdnn OfflineTdnnModelConfig
Tokens string // Path to tokens.txt
// Number of threads to use for neural network computation
NumThreads int
// 1 to print model meta information while loading
Debug int
// Optional. Valid values: cpu, cuda, coreml
Provider string
// Optional. Specify it for faster model initialization.
ModelType string
}
// Configuration for the offline/non-streaming recognizer.
type OfflineRecognizerConfig struct {
FeatConfig FeatureConfig
ModelConfig OfflineModelConfig
LmConfig OfflineLMConfig
// Valid decoding method: greedy_search, modified_beam_search
DecodingMethod string
// Used only when DecodingMethod is modified_beam_search.
MaxActivePaths int
}
// It wraps a pointer from C
type OfflineRecognizer struct {
impl *C.struct_SherpaOnnxOfflineRecognizer
}
// It wraps a pointer from C
type OfflineStream struct {
impl *C.struct_SherpaOnnxOfflineStream
}
// It contains recognition result of an offline stream.
type OfflineRecognizerResult struct {
Text string
}
// Frees the internal pointer of the recognition to avoid memory leak.
func DeleteOfflineRecognizer(recognizer *OfflineRecognizer) {
C.DestroyOfflineRecognizer(recognizer.impl)
recognizer.impl = nil
}
// The user is responsible to invoke [DeleteOfflineRecognizer]() to free
// the returned recognizer to avoid memory leak
func NewOfflineRecognizer(config *OfflineRecognizerConfig) *OfflineRecognizer {
c := C.struct_SherpaOnnxOfflineRecognizerConfig{}
c.feat_config.sample_rate = C.int(config.FeatConfig.SampleRate)
c.feat_config.feature_dim = C.int(config.FeatConfig.FeatureDim)
c.model_config.transducer.encoder = C.CString(config.ModelConfig.Transducer.Encoder)
defer C.free(unsafe.Pointer(c.model_config.transducer.encoder))
c.model_config.transducer.decoder = C.CString(config.ModelConfig.Transducer.Decoder)
defer C.free(unsafe.Pointer(c.model_config.transducer.decoder))
c.model_config.transducer.joiner = C.CString(config.ModelConfig.Transducer.Joiner)
defer C.free(unsafe.Pointer(c.model_config.transducer.joiner))
c.model_config.paraformer.model = C.CString(config.ModelConfig.Paraformer.Model)
defer C.free(unsafe.Pointer(c.model_config.paraformer.model))
c.model_config.nemo_ctc.model = C.CString(config.ModelConfig.NemoCTC.Model)
defer C.free(unsafe.Pointer(c.model_config.nemo_ctc.model))
c.model_config.whisper.encoder = C.CString(config.ModelConfig.Whisper.Encoder)
defer C.free(unsafe.Pointer(c.model_config.whisper.encoder))
c.model_config.whisper.decoder = C.CString(config.ModelConfig.Whisper.Decoder)
defer C.free(unsafe.Pointer(c.model_config.whisper.decoder))
c.model_config.tdnn.model = C.CString(config.ModelConfig.Tdnn.Model)
defer C.free(unsafe.Pointer(c.model_config.tdnn.model))
c.model_config.tokens = C.CString(config.ModelConfig.Tokens)
defer C.free(unsafe.Pointer(c.model_config.tokens))
c.model_config.num_threads = C.int(config.ModelConfig.NumThreads)
c.model_config.debug = C.int(config.ModelConfig.Debug)
c.model_config.provider = C.CString(config.ModelConfig.Provider)
defer C.free(unsafe.Pointer(c.model_config.provider))
c.model_config.model_type = C.CString(config.ModelConfig.ModelType)
defer C.free(unsafe.Pointer(c.model_config.model_type))
c.lm_config.model = C.CString(config.LmConfig.Model)
defer C.free(unsafe.Pointer(c.lm_config.model))
c.lm_config.scale = C.float(config.LmConfig.Scale)
c.decoding_method = C.CString(config.DecodingMethod)
defer C.free(unsafe.Pointer(c.decoding_method))
c.max_active_paths = C.int(config.MaxActivePaths)
recognizer := &OfflineRecognizer{}
recognizer.impl = C.CreateOfflineRecognizer(&c)
return recognizer
}
// Frees the internal pointer of the stream to avoid memory leak.
func DeleteOfflineStream(stream *OfflineStream) {
C.DestroyOfflineStream(stream.impl)
stream.impl = nil
}
// The user is responsible to invoke [DeleteOfflineStream]() to free
// the returned stream to avoid memory leak
func NewOfflineStream(recognizer *OfflineRecognizer) *OfflineStream {
stream := &OfflineStream{}
stream.impl = C.CreateOfflineStream(recognizer.impl)
return stream
}
// Input audio samples for the offline stream.
// Please only call it once. That is, input all samples at once.
//
// sampleRate is the sample rate of the input audio samples. If it is different
// from the value expected by the feature extractor, we will do resampling inside.
//
// samples contains the actual audio samples. Each sample is in the range [-1, 1].
func (s *OfflineStream) AcceptWaveform(sampleRate int, samples []float32) {
C.AcceptWaveformOffline(s.impl, C.int(sampleRate), (*C.float)(&samples[0]), C.int(len(samples)))
}
// Decode the offline stream.
func (recognizer *OfflineRecognizer) Decode(s *OfflineStream) {
C.DecodeOfflineStream(recognizer.impl, s.impl)
}
// Decode multiple streams in parallel, i.e., in batch.
func (recognizer *OfflineRecognizer) DecodeStreams(s []*OfflineStream) {
ss := make([]*C.struct_SherpaOnnxOfflineStream, len(s))
for i, v := range s {
ss[i] = v.impl
}
C.DecodeMultipleOfflineStreams(recognizer.impl, &ss[0], C.int(len(s)))
}
// Get the recognition result of the offline stream.
func (s *OfflineStream) GetResult() *OfflineRecognizerResult {
p := C.GetOfflineStreamResult(s.impl)
defer C.DestroyOfflineRecognizerResult(p)
result := &OfflineRecognizerResult{}
result.Text = C.GoString(p.text)
return result
}
// Configuration for offline/non-streaming text-to-speech (TTS).
//
// Please refer to
// https://k2-fsa.github.io/sherpa/onnx/tts/pretrained_models/index.html
// to download pre-trained models
type OfflineTtsVitsModelConfig struct {
Model string // Path to the VITS onnx model
Lexicon string // Path to lexicon.txt
Tokens string // Path to tokens.txt
NoiseScale float32 // noise scale for vits models. Please use 0.667 in general
NoiseScaleW float32 // noise scale for vits models. Please use 0.8 in general
LengthScale float32 // Please use 1.0 in general. Smaller -> Faster speech speed. Larger -> Slower speech speed
}
type OfflineTtsModelConfig struct {
Vits OfflineTtsVitsModelConfig
// Number of threads to use for neural network computation
NumThreads int
// 1 to print model meta information while loading
Debug int
// Optional. Valid values: cpu, cuda, coreml
Provider string
}
type OfflineTtsConfig struct {
Model OfflineTtsModelConfig
}
type GeneratedAudio struct {
// Normalized samples in the range [-1, 1]
Samples []float32
SampleRate int
}
// The offline tts class. It wraps a pointer from C.
type OfflineTts struct {
impl *C.struct_SherpaOnnxOfflineTts
}
// Free the internal pointer inside the tts to avoid memory leak.
func DeleteOfflineTts(tts *OfflineTts) {
C.SherpaOnnxDestroyOfflineTts(tts.impl)
tts.impl = nil
}
// The user is responsible to invoke [DeleteOfflineTts]() to free
// the returned tts to avoid memory leak
func NewOfflineTts(config *OfflineTtsConfig) *OfflineTts {
c := C.struct_SherpaOnnxOfflineTtsConfig{}
c.model.vits.model = C.CString(config.Model.Vits.Model)
defer C.free(unsafe.Pointer(c.model.vits.model))
c.model.vits.lexicon = C.CString(config.Model.Vits.Lexicon)
defer C.free(unsafe.Pointer(c.model.vits.lexicon))
c.model.vits.tokens = C.CString(config.Model.Vits.Tokens)
defer C.free(unsafe.Pointer(c.model.vits.tokens))
c.model.vits.noise_scale = C.float(config.Model.Vits.NoiseScale)
c.model.vits.noise_scale_w = C.float(config.Model.Vits.NoiseScaleW)
c.model.vits.length_scale = C.float(config.Model.Vits.LengthScale)
c.model.num_threads = C.int(config.Model.NumThreads)
c.model.debug = C.int(config.Model.Debug)
c.model.provider = C.CString(config.Model.Provider)
defer C.free(unsafe.Pointer(c.model.provider))
tts := &OfflineTts{}
tts.impl = C.SherpaOnnxCreateOfflineTts(&c)
return tts
}
func (tts *OfflineTts) Generate(text string, sid int, speed float32) *GeneratedAudio {
s := C.CString(text)
defer C.free(unsafe.Pointer(s))
audio := C.SherpaOnnxOfflineTtsGenerate(tts.impl, s, C.int(sid), C.float(speed))
defer C.SherpaOnnxDestroyOfflineTtsGeneratedAudio(audio)
ans := &GeneratedAudio{}
ans.SampleRate = int(audio.sample_rate)
n := int(audio.n)
ans.Samples = make([]float32, n)
samples := (*[1 << 28]C.float)(unsafe.Pointer(audio.samples))[:n:n]
// copy(ans.Samples, samples)
for i := 0; i < n; i++ {
ans.Samples[i] = float32(samples[i])
}
return ans
}
func (audio *GeneratedAudio) Save(filename string) int {
s := C.CString(filename)
defer C.free(unsafe.Pointer(s))
ok := int(C.SherpaOnnxWriteWave((*C.float)(&audio.Samples[0]), C.int(len(audio.Samples)), C.int(audio.SampleRate), s))
return ok
}