offline-recognizer-impl.cc 11.2 KB
// sherpa-onnx/csrc/offline-recognizer-impl.cc
//
// Copyright (c)  2023  Xiaomi Corporation

#include "sherpa-onnx/csrc/offline-recognizer-impl.h"

#include <string>

#include "onnxruntime_cxx_api.h"  // NOLINT
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/offline-recognizer-ctc-impl.h"
#include "sherpa-onnx/csrc/offline-recognizer-paraformer-impl.h"
#include "sherpa-onnx/csrc/offline-recognizer-transducer-impl.h"
#include "sherpa-onnx/csrc/offline-recognizer-transducer-nemo-impl.h"
#include "sherpa-onnx/csrc/offline-recognizer-whisper-impl.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
#include "sherpa-onnx/csrc/text-utils.h"

namespace sherpa_onnx {

std::unique_ptr<OfflineRecognizerImpl> OfflineRecognizerImpl::Create(
    const OfflineRecognizerConfig &config) {
  if (!config.model_config.model_type.empty()) {
    const auto &model_type = config.model_config.model_type;
    if (model_type == "transducer") {
      return std::make_unique<OfflineRecognizerTransducerImpl>(config);
    } else if (model_type == "nemo_transducer") {
      return std::make_unique<OfflineRecognizerTransducerNeMoImpl>(config);
    } else if (model_type == "paraformer") {
      return std::make_unique<OfflineRecognizerParaformerImpl>(config);
    } else if (model_type == "nemo_ctc" || model_type == "tdnn" ||
               model_type == "zipformer2_ctc" || model_type == "wenet_ctc") {
      return std::make_unique<OfflineRecognizerCtcImpl>(config);
    } else if (model_type == "whisper") {
      return std::make_unique<OfflineRecognizerWhisperImpl>(config);
    } else {
      SHERPA_ONNX_LOGE(
          "Invalid model_type: %s. Trying to load the model to get its type",
          model_type.c_str());
    }
  }

  Ort::Env env(ORT_LOGGING_LEVEL_ERROR);

  Ort::SessionOptions sess_opts;
  sess_opts.SetIntraOpNumThreads(1);
  sess_opts.SetInterOpNumThreads(1);

  std::string model_filename;
  if (!config.model_config.transducer.encoder_filename.empty()) {
    model_filename = config.model_config.transducer.encoder_filename;
  } else if (!config.model_config.paraformer.model.empty()) {
    model_filename = config.model_config.paraformer.model;
  } else if (!config.model_config.nemo_ctc.model.empty()) {
    model_filename = config.model_config.nemo_ctc.model;
  } else if (!config.model_config.tdnn.model.empty()) {
    model_filename = config.model_config.tdnn.model;
  } else if (!config.model_config.zipformer_ctc.model.empty()) {
    model_filename = config.model_config.zipformer_ctc.model;
  } else if (!config.model_config.wenet_ctc.model.empty()) {
    model_filename = config.model_config.wenet_ctc.model;
  } else if (!config.model_config.whisper.encoder.empty()) {
    model_filename = config.model_config.whisper.encoder;
  } else {
    SHERPA_ONNX_LOGE("Please provide a model");
    exit(-1);
  }

  auto buf = ReadFile(model_filename);

  auto encoder_sess =
      std::make_unique<Ort::Session>(env, buf.data(), buf.size(), sess_opts);

  Ort::ModelMetadata meta_data = encoder_sess->GetModelMetadata();

  Ort::AllocatorWithDefaultOptions allocator;  // used in the macro below

  auto model_type_ptr =
      meta_data.LookupCustomMetadataMapAllocated("model_type", allocator);
  if (!model_type_ptr) {
    SHERPA_ONNX_LOGE(
        "No model_type in the metadata!\n\n"
        "Please refer to the following URLs to add metadata"
        "\n"
        "(0) Transducer models from icefall"
        "\n    "
        "https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/"
        "pruned_transducer_stateless7/export-onnx.py#L303"
        "\n"
        "(1) Nemo CTC models\n    "
        "https://huggingface.co/csukuangfj/"
        "sherpa-onnx-nemo-ctc-en-citrinet-512/blob/main/add-model-metadata.py"
        "\n"
        "(2) Paraformer"
        "\n    "
        "https://huggingface.co/csukuangfj/"
        "paraformer-onnxruntime-python-example/blob/main/add-model-metadata.py"
        "\n    "
        "(3) Whisper"
        "\n    "
        "(4) Tdnn models of the yesno recipe from icefall"
        "\n    "
        "https://github.com/k2-fsa/icefall/tree/master/egs/yesno/ASR/tdnn"
        "\n"
        "(5) Zipformer CTC models from icefall"
        "\n    "
        "https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/"
        "zipformer/export-onnx-ctc.py"
        "\n"
        "(6) CTC models from WeNet"
        "\n    "
        "https://github.com/k2-fsa/sherpa-onnx/blob/master/scripts/wenet/run.sh"
        "\n"
        "\n");
    exit(-1);
  }
  std::string model_type(model_type_ptr.get());

  if (model_type == "conformer" || model_type == "zipformer" ||
      model_type == "zipformer2") {
    return std::make_unique<OfflineRecognizerTransducerImpl>(config);
  }

  if (model_type == "paraformer") {
    return std::make_unique<OfflineRecognizerParaformerImpl>(config);
  }

  if (model_type == "EncDecHybridRNNTCTCBPEModel" &&
      !config.model_config.transducer.decoder_filename.empty() &&
      !config.model_config.transducer.joiner_filename.empty()) {
    return std::make_unique<OfflineRecognizerTransducerNeMoImpl>(config);
  }

  if (model_type == "EncDecCTCModelBPE" ||
      model_type == "EncDecHybridRNNTCTCBPEModel" || model_type == "tdnn" ||
      model_type == "zipformer2_ctc" || model_type == "wenet_ctc") {
    return std::make_unique<OfflineRecognizerCtcImpl>(config);
  }

  if (strncmp(model_type.c_str(), "whisper", 7) == 0) {
    return std::make_unique<OfflineRecognizerWhisperImpl>(config);
  }

  SHERPA_ONNX_LOGE(
      "\nUnsupported model_type: %s\n"
      "We support only the following model types at present: \n"
      " - Non-streaming transducer models from icefall\n"
      " - Non-streaming Paraformer models from FunASR\n"
      " - EncDecCTCModelBPE models from NeMo\n"
      " - EncDecHybridRNNTCTCBPEModel models from NeMo\n"
      " - Whisper models\n"
      " - Tdnn models\n"
      " - Zipformer CTC models\n"
      " - WeNet CTC models\n",
      model_type.c_str());

  exit(-1);
}

#if __ANDROID_API__ >= 9
std::unique_ptr<OfflineRecognizerImpl> OfflineRecognizerImpl::Create(
    AAssetManager *mgr, const OfflineRecognizerConfig &config) {
  if (!config.model_config.model_type.empty()) {
    const auto &model_type = config.model_config.model_type;
    if (model_type == "transducer") {
      return std::make_unique<OfflineRecognizerTransducerImpl>(mgr, config);
    } else if (model_type == "nemo_transducer") {
      return std::make_unique<OfflineRecognizerTransducerNeMoImpl>(mgr, config);
    } else if (model_type == "paraformer") {
      return std::make_unique<OfflineRecognizerParaformerImpl>(mgr, config);
    } else if (model_type == "nemo_ctc" || model_type == "tdnn" ||
               model_type == "zipformer2_ctc" || model_type == "wenet_ctc") {
      return std::make_unique<OfflineRecognizerCtcImpl>(mgr, config);
    } else if (model_type == "whisper") {
      return std::make_unique<OfflineRecognizerWhisperImpl>(mgr, config);
    } else {
      SHERPA_ONNX_LOGE(
          "Invalid model_type: %s. Trying to load the model to get its type",
          model_type.c_str());
    }
  }

  Ort::Env env(ORT_LOGGING_LEVEL_ERROR);

  Ort::SessionOptions sess_opts;
  sess_opts.SetIntraOpNumThreads(1);
  sess_opts.SetInterOpNumThreads(1);

  std::string model_filename;
  if (!config.model_config.transducer.encoder_filename.empty()) {
    model_filename = config.model_config.transducer.encoder_filename;
  } else if (!config.model_config.paraformer.model.empty()) {
    model_filename = config.model_config.paraformer.model;
  } else if (!config.model_config.nemo_ctc.model.empty()) {
    model_filename = config.model_config.nemo_ctc.model;
  } else if (!config.model_config.tdnn.model.empty()) {
    model_filename = config.model_config.tdnn.model;
  } else if (!config.model_config.zipformer_ctc.model.empty()) {
    model_filename = config.model_config.zipformer_ctc.model;
  } else if (!config.model_config.wenet_ctc.model.empty()) {
    model_filename = config.model_config.wenet_ctc.model;
  } else if (!config.model_config.whisper.encoder.empty()) {
    model_filename = config.model_config.whisper.encoder;
  } else {
    SHERPA_ONNX_LOGE("Please provide a model");
    exit(-1);
  }

  auto buf = ReadFile(mgr, model_filename);

  auto encoder_sess =
      std::make_unique<Ort::Session>(env, buf.data(), buf.size(), sess_opts);

  Ort::ModelMetadata meta_data = encoder_sess->GetModelMetadata();

  Ort::AllocatorWithDefaultOptions allocator;  // used in the macro below

  auto model_type_ptr =
      meta_data.LookupCustomMetadataMapAllocated("model_type", allocator);
  if (!model_type_ptr) {
    SHERPA_ONNX_LOGE(
        "No model_type in the metadata!\n\n"
        "Please refer to the following URLs to add metadata"
        "\n"
        "(0) Transducer models from icefall"
        "\n    "
        "https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/"
        "pruned_transducer_stateless7/export-onnx.py#L303"
        "\n"
        "(1) Nemo CTC models\n    "
        "https://huggingface.co/csukuangfj/"
        "sherpa-onnx-nemo-ctc-en-citrinet-512/blob/main/add-model-metadata.py"
        "\n"
        "(2) Paraformer"
        "\n    "
        "https://huggingface.co/csukuangfj/"
        "paraformer-onnxruntime-python-example/blob/main/add-model-metadata.py"
        "\n    "
        "(3) Whisper"
        "\n    "
        "(4) Tdnn models of the yesno recipe from icefall"
        "\n    "
        "https://github.com/k2-fsa/icefall/tree/master/egs/yesno/ASR/tdnn"
        "\n"
        "(5) Zipformer CTC models from icefall"
        "\n    "
        "https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/"
        "zipformer/export-onnx-ctc.py"
        "\n"
        "(6) CTC models from WeNet"
        "\n    "
        "https://github.com/k2-fsa/sherpa-onnx/blob/master/scripts/wenet/run.sh"
        "\n"
        "\n");
    exit(-1);
  }
  std::string model_type(model_type_ptr.get());

  if (model_type == "conformer" || model_type == "zipformer" ||
      model_type == "zipformer2") {
    return std::make_unique<OfflineRecognizerTransducerImpl>(mgr, config);
  }

  if (model_type == "paraformer") {
    return std::make_unique<OfflineRecognizerParaformerImpl>(mgr, config);
  }

  if (model_type == "EncDecHybridRNNTCTCBPEModel" &&
      !config.model_config.transducer.decoder_filename.empty() &&
      !config.model_config.transducer.joiner_filename.empty()) {
    return std::make_unique<OfflineRecognizerTransducerNeMoImpl>(mgr, config);
  }

  if (model_type == "EncDecCTCModelBPE" ||
      model_type == "EncDecHybridRNNTCTCBPEModel" || model_type == "tdnn" ||
      model_type == "zipformer2_ctc" || model_type == "wenet_ctc") {
    return std::make_unique<OfflineRecognizerCtcImpl>(mgr, config);
  }

  if (strncmp(model_type.c_str(), "whisper", 7) == 0) {
    return std::make_unique<OfflineRecognizerWhisperImpl>(mgr, config);
  }

  SHERPA_ONNX_LOGE(
      "\nUnsupported model_type: %s\n"
      "We support only the following model types at present: \n"
      " - Non-streaming transducer models from icefall\n"
      " - Non-streaming Paraformer models from FunASR\n"
      " - EncDecCTCModelBPE models from NeMo\n"
      " - EncDecHybridRNNTCTCBPEModel models from NeMo\n"
      " - Whisper models\n"
      " - Tdnn models\n"
      " - Zipformer CTC models\n"
      " - WeNet CTC models\n",
      model_type.c_str());

  exit(-1);
}
#endif

}  // namespace sherpa_onnx