online-transducer-greedy-search-decoder.cc
4.0 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
// sherpa-onnx/csrc/online-transducer-greedy-search-decoder.cc
//
// Copyright (c) 2023 Xiaomi Corporation
#include "sherpa-onnx/csrc/online-transducer-greedy-search-decoder.h"
#include <assert.h>
#include <algorithm>
#include <utility>
#include <vector>
#include "sherpa-onnx/csrc/onnx-utils.h"
namespace sherpa_onnx {
static Ort::Value GetFrame(Ort::Value *encoder_out, int32_t t) {
std::vector<int64_t> encoder_out_shape =
encoder_out->GetTensorTypeAndShapeInfo().GetShape();
assert(encoder_out_shape[0] == 1);
int32_t encoder_out_dim = encoder_out_shape[2];
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::array<int64_t, 2> shape{1, encoder_out_dim};
return Ort::Value::CreateTensor(
memory_info,
encoder_out->GetTensorMutableData<float>() + t * encoder_out_dim,
encoder_out_dim, shape.data(), shape.size());
}
static Ort::Value Repeat(OrtAllocator *allocator, Ort::Value *cur_encoder_out,
int32_t n) {
if (n == 1) {
return std::move(*cur_encoder_out);
}
std::vector<int64_t> cur_encoder_out_shape =
cur_encoder_out->GetTensorTypeAndShapeInfo().GetShape();
std::array<int64_t, 2> ans_shape{n, cur_encoder_out_shape[1]};
Ort::Value ans = Ort::Value::CreateTensor<float>(allocator, ans_shape.data(),
ans_shape.size());
const float *src = cur_encoder_out->GetTensorData<float>();
float *dst = ans.GetTensorMutableData<float>();
for (int32_t i = 0; i != n; ++i) {
std::copy(src, src + cur_encoder_out_shape[1], dst);
dst += cur_encoder_out_shape[1];
}
return ans;
}
OnlineTransducerDecoderResult
OnlineTransducerGreedySearchDecoder::GetEmptyResult() const {
int32_t context_size = model_->ContextSize();
int32_t blank_id = 0; // always 0
OnlineTransducerDecoderResult r;
r.tokens.resize(context_size, blank_id);
return r;
}
void OnlineTransducerGreedySearchDecoder::StripLeadingBlanks(
OnlineTransducerDecoderResult *r) const {
int32_t context_size = model_->ContextSize();
auto start = r->tokens.begin() + context_size;
auto end = r->tokens.end();
r->tokens = std::vector<int64_t>(start, end);
}
void OnlineTransducerGreedySearchDecoder::Decode(
Ort::Value encoder_out,
std::vector<OnlineTransducerDecoderResult> *result) {
std::vector<int64_t> encoder_out_shape =
encoder_out.GetTensorTypeAndShapeInfo().GetShape();
if (encoder_out_shape[0] != result->size()) {
fprintf(stderr,
"Size mismatch! encoder_out.size(0) %d, result.size(0): %d\n",
static_cast<int32_t>(encoder_out_shape[0]),
static_cast<int32_t>(result->size()));
exit(-1);
}
int32_t batch_size = static_cast<int32_t>(encoder_out_shape[0]);
int32_t num_frames = static_cast<int32_t>(encoder_out_shape[1]);
int32_t vocab_size = model_->VocabSize();
Ort::Value decoder_input = model_->BuildDecoderInput(*result);
Ort::Value decoder_out = model_->RunDecoder(std::move(decoder_input));
for (int32_t t = 0; t != num_frames; ++t) {
Ort::Value cur_encoder_out = GetFrame(&encoder_out, t);
cur_encoder_out = Repeat(model_->Allocator(), &cur_encoder_out, batch_size);
Ort::Value logit =
model_->RunJoiner(std::move(cur_encoder_out), Clone(&decoder_out));
const float *p_logit = logit.GetTensorData<float>();
bool emitted = false;
for (int32_t i = 0; i < batch_size; ++i, p_logit += vocab_size) {
auto y = static_cast<int32_t>(std::distance(
static_cast<const float *>(p_logit),
std::max_element(static_cast<const float *>(p_logit),
static_cast<const float *>(p_logit) + vocab_size)));
if (y != 0) {
emitted = true;
(*result)[i].tokens.push_back(y);
(*result)[i].num_trailing_blanks = 0;
} else {
++(*result)[i].num_trailing_blanks;
}
}
if (emitted) {
decoder_input = model_->BuildDecoderInput(*result);
decoder_out = model_->RunDecoder(std::move(decoder_input));
}
}
}
} // namespace sherpa_onnx