online-transducer-model.cc
7.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
// sherpa-onnx/csrc/online-transducer-model.cc
//
// Copyright (c) 2023 Xiaomi Corporation
// Copyright (c) 2023 Pingfeng Luo
#include "sherpa-onnx/csrc/online-transducer-model.h"
#if __ANDROID_API__ >= 9
#include "android/asset_manager.h"
#include "android/asset_manager_jni.h"
#endif
#if __OHOS__
#include "rawfile/raw_file_manager.h"
#endif
#include <algorithm>
#include <memory>
#include <sstream>
#include <string>
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/online-conformer-transducer-model.h"
#include "sherpa-onnx/csrc/online-lstm-transducer-model.h"
#include "sherpa-onnx/csrc/online-zipformer-transducer-model.h"
#include "sherpa-onnx/csrc/online-zipformer2-transducer-model.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
namespace {
enum class ModelType : std::uint8_t {
kConformer,
kLstm,
kZipformer,
kZipformer2,
kUnknown,
};
} // namespace
namespace sherpa_onnx {
static ModelType GetModelType(char *model_data, size_t model_data_length,
bool debug) {
Ort::Env env(ORT_LOGGING_LEVEL_ERROR);
Ort::SessionOptions sess_opts;
sess_opts.SetIntraOpNumThreads(1);
sess_opts.SetInterOpNumThreads(1);
auto sess = std::make_unique<Ort::Session>(env, model_data, model_data_length,
sess_opts);
Ort::ModelMetadata meta_data = sess->GetModelMetadata();
if (debug) {
std::ostringstream os;
PrintModelMetadata(os, meta_data);
#if __OHOS__
SHERPA_ONNX_LOGE("%{public}s", os.str().c_str());
#else
SHERPA_ONNX_LOGE("%s", os.str().c_str());
#endif
}
Ort::AllocatorWithDefaultOptions allocator;
auto model_type =
LookupCustomModelMetaData(meta_data, "model_type", allocator);
if (model_type.empty()) {
SHERPA_ONNX_LOGE(
"No model_type in the metadata!\n"
"Please make sure you are using the latest export-onnx.py from icefall "
"to export your transducer models");
return ModelType::kUnknown;
}
if (model_type == "conformer") {
return ModelType::kConformer;
} else if (model_type == "lstm") {
return ModelType::kLstm;
} else if (model_type == "zipformer") {
return ModelType::kZipformer;
} else if (model_type == "zipformer2") {
return ModelType::kZipformer2;
} else {
SHERPA_ONNX_LOGE("Unsupported model_type: %s", model_type.c_str());
return ModelType::kUnknown;
}
}
std::unique_ptr<OnlineTransducerModel> OnlineTransducerModel::Create(
const OnlineModelConfig &config) {
if (!config.model_type.empty()) {
const auto &model_type = config.model_type;
if (model_type == "conformer") {
return std::make_unique<OnlineConformerTransducerModel>(config);
} else if (model_type == "lstm") {
return std::make_unique<OnlineLstmTransducerModel>(config);
} else if (model_type == "zipformer") {
return std::make_unique<OnlineZipformerTransducerModel>(config);
} else if (model_type == "zipformer2") {
return std::make_unique<OnlineZipformer2TransducerModel>(config);
} else {
SHERPA_ONNX_LOGE(
"Invalid model_type: %s. Trying to load the model to get its type",
model_type.c_str());
}
}
ModelType model_type = ModelType::kUnknown;
{
auto buffer = ReadFile(config.transducer.encoder);
model_type = GetModelType(buffer.data(), buffer.size(), config.debug);
}
switch (model_type) {
case ModelType::kConformer:
return std::make_unique<OnlineConformerTransducerModel>(config);
case ModelType::kLstm:
return std::make_unique<OnlineLstmTransducerModel>(config);
case ModelType::kZipformer:
return std::make_unique<OnlineZipformerTransducerModel>(config);
case ModelType::kZipformer2:
return std::make_unique<OnlineZipformer2TransducerModel>(config);
case ModelType::kUnknown:
SHERPA_ONNX_LOGE("Unknown model type in online transducer!");
return nullptr;
}
// unreachable code
return nullptr;
}
Ort::Value OnlineTransducerModel::BuildDecoderInput(
const std::vector<OnlineTransducerDecoderResult> &results) {
int32_t batch_size = static_cast<int32_t>(results.size());
int32_t context_size = ContextSize();
std::array<int64_t, 2> shape{batch_size, context_size};
Ort::Value decoder_input = Ort::Value::CreateTensor<int64_t>(
Allocator(), shape.data(), shape.size());
int64_t *p = decoder_input.GetTensorMutableData<int64_t>();
for (const auto &r : results) {
const int64_t *begin = r.tokens.data() + r.tokens.size() - context_size;
const int64_t *end = r.tokens.data() + r.tokens.size();
std::copy(begin, end, p);
p += context_size;
}
return decoder_input;
}
Ort::Value OnlineTransducerModel::BuildDecoderInput(
const std::vector<Hypothesis> &hyps) {
int32_t batch_size = static_cast<int32_t>(hyps.size());
int32_t context_size = ContextSize();
std::array<int64_t, 2> shape{batch_size, context_size};
Ort::Value decoder_input = Ort::Value::CreateTensor<int64_t>(
Allocator(), shape.data(), shape.size());
int64_t *p = decoder_input.GetTensorMutableData<int64_t>();
for (const auto &h : hyps) {
std::copy(h.ys.end() - context_size, h.ys.end(), p);
p += context_size;
}
return decoder_input;
}
template <typename Manager>
std::unique_ptr<OnlineTransducerModel> OnlineTransducerModel::Create(
Manager *mgr, const OnlineModelConfig &config) {
if (!config.model_type.empty()) {
const auto &model_type = config.model_type;
if (model_type == "conformer") {
return std::make_unique<OnlineConformerTransducerModel>(mgr, config);
} else if (model_type == "lstm") {
return std::make_unique<OnlineLstmTransducerModel>(mgr, config);
} else if (model_type == "zipformer") {
return std::make_unique<OnlineZipformerTransducerModel>(mgr, config);
} else if (model_type == "zipformer2") {
return std::make_unique<OnlineZipformer2TransducerModel>(mgr, config);
} else {
SHERPA_ONNX_LOGE(
"Invalid model_type: %s. Trying to load the model to get its type",
model_type.c_str());
}
}
auto buffer = ReadFile(mgr, config.transducer.encoder);
auto model_type = GetModelType(buffer.data(), buffer.size(), config.debug);
switch (model_type) {
case ModelType::kConformer:
return std::make_unique<OnlineConformerTransducerModel>(mgr, config);
case ModelType::kLstm:
return std::make_unique<OnlineLstmTransducerModel>(mgr, config);
case ModelType::kZipformer:
return std::make_unique<OnlineZipformerTransducerModel>(mgr, config);
case ModelType::kZipformer2:
return std::make_unique<OnlineZipformer2TransducerModel>(mgr, config);
case ModelType::kUnknown:
SHERPA_ONNX_LOGE("Unknown model type in online transducer!");
return nullptr;
}
// unreachable code
return nullptr;
}
#if __ANDROID_API__ >= 9
template std::unique_ptr<OnlineTransducerModel> OnlineTransducerModel::Create(
AAssetManager *mgr, const OnlineModelConfig &config);
#endif
#if __OHOS__
template std::unique_ptr<OnlineTransducerModel> OnlineTransducerModel::Create(
NativeResourceManager *mgr, const OnlineModelConfig &config);
#endif
} // namespace sherpa_onnx