offline-dolphin-model.cc
4.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
// sherpa-onnx/csrc/offline-dolphin-model.cc
//
// Copyright (c) 2025 Xiaomi Corporation
#include "sherpa-onnx/csrc/offline-dolphin-model.h"
#include <algorithm>
#include <string>
#include <utility>
#if __ANDROID_API__ >= 9
#include "android/asset_manager.h"
#include "android/asset_manager_jni.h"
#endif
#if __OHOS__
#include "rawfile/raw_file_manager.h"
#endif
#include "sherpa-onnx/csrc/file-utils.h"
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
#include "sherpa-onnx/csrc/session.h"
#include "sherpa-onnx/csrc/text-utils.h"
namespace sherpa_onnx {
class OfflineDolphinModel::Impl {
public:
explicit Impl(const OfflineModelConfig &config)
: config_(config),
env_(ORT_LOGGING_LEVEL_ERROR),
sess_opts_(GetSessionOptions(config)),
allocator_{} {
auto buf = ReadFile(config_.dolphin.model);
Init(buf.data(), buf.size());
}
template <typename Manager>
Impl(Manager *mgr, const OfflineModelConfig &config)
: config_(config),
env_(ORT_LOGGING_LEVEL_ERROR),
sess_opts_(GetSessionOptions(config)),
allocator_{} {
auto buf = ReadFile(mgr, config_.dolphin.model);
Init(buf.data(), buf.size());
}
std::vector<Ort::Value> Forward(Ort::Value features,
Ort::Value features_length) {
std::array<Ort::Value, 2> inputs = {
std::move(features),
std::move(features_length),
};
return sess_->Run({}, input_names_ptr_.data(), inputs.data(), inputs.size(),
output_names_ptr_.data(), output_names_ptr_.size());
}
int32_t VocabSize() const { return meta_data_.vocab_size; }
int32_t SubsamplingFactor() const { return meta_data_.subsampling_factor; }
void NormalizeFeatures(float *features, int32_t num_frames,
int32_t feat_dim) const {
auto p = features;
const auto &mean = meta_data_.mean;
const auto &invstd = meta_data_.inv_stddev;
for (int32_t f = 0; f < num_frames; ++f) {
for (int32_t d = 0; d < feat_dim; ++d) {
p[d] = (p[d] - mean[d]) * invstd[d];
}
p += feat_dim;
}
}
OrtAllocator *Allocator() { return allocator_; }
private:
void Init(void *model_data, size_t model_data_length) {
sess_ = std::make_unique<Ort::Session>(env_, model_data, model_data_length,
sess_opts_);
GetInputNames(sess_.get(), &input_names_, &input_names_ptr_);
GetOutputNames(sess_.get(), &output_names_, &output_names_ptr_);
// get meta data
Ort::ModelMetadata meta_data = sess_->GetModelMetadata();
if (config_.debug) {
std::ostringstream os;
PrintModelMetadata(os, meta_data);
#if __OHOS__
SHERPA_ONNX_LOGE("%{public}s\n", os.str().c_str());
#else
SHERPA_ONNX_LOGE("%s\n", os.str().c_str());
#endif
}
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
SHERPA_ONNX_READ_META_DATA(meta_data_.vocab_size, "vocab_size");
SHERPA_ONNX_READ_META_DATA_VEC_FLOAT(meta_data_.mean, "mean");
SHERPA_ONNX_READ_META_DATA_VEC_FLOAT(meta_data_.inv_stddev, "invstd");
}
private:
OfflineModelConfig config_;
Ort::Env env_;
Ort::SessionOptions sess_opts_;
Ort::AllocatorWithDefaultOptions allocator_;
std::unique_ptr<Ort::Session> sess_;
std::vector<std::string> input_names_;
std::vector<const char *> input_names_ptr_;
std::vector<std::string> output_names_;
std::vector<const char *> output_names_ptr_;
OfflineDolphinModelMetaData meta_data_;
};
OfflineDolphinModel::OfflineDolphinModel(const OfflineModelConfig &config)
: impl_(std::make_unique<Impl>(config)) {}
template <typename Manager>
OfflineDolphinModel::OfflineDolphinModel(Manager *mgr,
const OfflineModelConfig &config)
: impl_(std::make_unique<Impl>(mgr, config)) {}
OfflineDolphinModel::~OfflineDolphinModel() = default;
std::vector<Ort::Value> OfflineDolphinModel::Forward(
Ort::Value features, Ort::Value features_length) {
return impl_->Forward(std::move(features), std::move(features_length));
}
int32_t OfflineDolphinModel::VocabSize() const { return impl_->VocabSize(); }
int32_t OfflineDolphinModel::SubsamplingFactor() const {
return impl_->SubsamplingFactor();
}
void OfflineDolphinModel::NormalizeFeatures(float *features, int32_t num_frames,
int32_t feat_dim) const {
return impl_->NormalizeFeatures(features, num_frames, feat_dim);
}
OrtAllocator *OfflineDolphinModel::Allocator() const {
return impl_->Allocator();
}
#if __ANDROID_API__ >= 9
template OfflineDolphinModel::OfflineDolphinModel(
AAssetManager *mgr, const OfflineModelConfig &config);
#endif
#if __OHOS__
template OfflineDolphinModel::OfflineDolphinModel(
NativeResourceManager *mgr, const OfflineModelConfig &config);
#endif
} // namespace sherpa_onnx