speaker-diarization-onnx.py
14.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
"""
Please refer to
https://github.com/k2-fsa/sherpa-onnx/blob/master/.github/workflows/speaker-diarization.yaml
for usages.
"""
import argparse
from datetime import timedelta
from pathlib import Path
from typing import List
import librosa
import numpy as np
import onnxruntime as ort
import sherpa_onnx
import soundfile as sf
from numpy.lib.stride_tricks import as_strided
class Segment:
def __init__(
self,
start,
end,
speaker,
):
assert start < end
self.start = start
self.end = end
self.speaker = speaker
def merge(self, other, gap=0.5):
assert self.speaker == other.speaker, (self.speaker, other.speaker)
if self.end < other.start and self.end + gap >= other.start:
return Segment(start=self.start, end=other.end, speaker=self.speaker)
elif other.end < self.start and other.end + gap >= self.start:
return Segment(start=other.start, end=self.end, speaker=self.speaker)
else:
return None
@property
def duration(self):
return self.end - self.start
def __str__(self):
s = f"{timedelta(seconds=self.start)}"[:-3]
s += " --> "
s += f"{timedelta(seconds=self.end)}"[:-3]
s += f" speaker_{self.speaker:02d}"
return s
def merge_segment_list(in_out: List[Segment], min_duration_off: float):
changed = True
while changed:
changed = False
for i in range(len(in_out)):
if i + 1 >= len(in_out):
continue
new_segment = in_out[i].merge(in_out[i + 1], gap=min_duration_off)
if new_segment is None:
continue
del in_out[i + 1]
in_out[i] = new_segment
changed = True
break
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--seg-model",
type=str,
required=True,
help="Path to model.onnx for segmentation",
)
parser.add_argument(
"--speaker-embedding-model",
type=str,
required=True,
help="Path to model.onnx for speaker embedding extractor",
)
parser.add_argument("--wav", type=str, required=True, help="Path to test.wav")
return parser.parse_args()
class OnnxSegmentationModel:
def __init__(self, filename):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 1
self.session_opts = session_opts
self.model = ort.InferenceSession(
filename,
sess_options=self.session_opts,
providers=["CPUExecutionProvider"],
)
meta = self.model.get_modelmeta().custom_metadata_map
print(meta)
self.window_size = int(meta["window_size"])
self.sample_rate = int(meta["sample_rate"])
self.window_shift = int(0.1 * self.window_size)
self.receptive_field_size = int(meta["receptive_field_size"])
self.receptive_field_shift = int(meta["receptive_field_shift"])
self.num_speakers = int(meta["num_speakers"])
self.powerset_max_classes = int(meta["powerset_max_classes"])
self.num_classes = int(meta["num_classes"])
def __call__(self, x):
"""
Args:
x: (N, num_samples)
Returns:
A tensor of shape (N, num_frames, num_classes)
"""
x = np.expand_dims(x, axis=1)
(y,) = self.model.run(
[self.model.get_outputs()[0].name], {self.model.get_inputs()[0].name: x}
)
return y
def load_wav(filename, expected_sample_rate) -> np.ndarray:
audio, sample_rate = sf.read(filename, dtype="float32", always_2d=True)
audio = audio[:, 0] # only use the first channel
if sample_rate != expected_sample_rate:
audio = librosa.resample(
audio,
orig_sr=sample_rate,
target_sr=expected_sample_rate,
)
return audio
def get_powerset_mapping(num_classes, num_speakers, powerset_max_classes):
mapping = np.zeros((num_classes, num_speakers))
k = 1
for i in range(1, powerset_max_classes + 1):
if i == 1:
for j in range(0, num_speakers):
mapping[k, j] = 1
k += 1
elif i == 2:
for j in range(0, num_speakers):
for m in range(j + 1, num_speakers):
mapping[k, j] = 1
mapping[k, m] = 1
k += 1
elif i == 3:
raise RuntimeError("Unsupported")
return mapping
def to_multi_label(y, mapping):
"""
Args:
y: (num_chunks, num_frames, num_classes)
Returns:
A tensor of shape (num_chunks, num_frames, num_speakers)
"""
y = np.argmax(y, axis=-1)
labels = mapping[y.reshape(-1)].reshape(y.shape[0], y.shape[1], -1)
return labels
# speaker count per frame
def speaker_count(labels, seg_m):
"""
Args:
labels: (num_chunks, num_frames, num_speakers)
seg_m: Segmentation model
Returns:
A integer array of shape (num_total_frames,)
"""
labels = labels.sum(axis=-1)
# Now labels: (num_chunks, num_frames)
num_frames = (
int(
(seg_m.window_size + (labels.shape[0] - 1) * seg_m.window_shift)
/ seg_m.receptive_field_shift
)
+ 1
)
ans = np.zeros((num_frames,))
count = np.zeros((num_frames,))
for i in range(labels.shape[0]):
this_chunk = labels[i]
start = int(i * seg_m.window_shift / seg_m.receptive_field_shift + 0.5)
end = start + this_chunk.shape[0]
ans[start:end] += this_chunk
count[start:end] += 1
ans /= np.maximum(count, 1e-12)
return (ans + 0.5).astype(np.int8)
def load_speaker_embedding_model(filename):
config = sherpa_onnx.SpeakerEmbeddingExtractorConfig(
model=filename,
num_threads=1,
debug=0,
)
if not config.validate():
raise ValueError(f"Invalid config. {config}")
extractor = sherpa_onnx.SpeakerEmbeddingExtractor(config)
return extractor
def get_embeddings(embedding_filename, audio, labels, seg_m, exclude_overlap):
"""
Args:
embedding_filename: Path to the speaker embedding extractor model
audio: (num_samples,)
labels: (num_chunks, num_frames, num_speakers)
seg_m: segmentation model
Returns:
Return (num_chunks, num_speakers, embedding_dim)
"""
if exclude_overlap:
labels = labels * (labels.sum(axis=-1, keepdims=True) < 2)
extractor = load_speaker_embedding_model(embedding_filename)
buffer = np.empty(seg_m.window_size)
num_chunks, num_frames, num_speakers = labels.shape
ans_chunk_speaker_pair = []
ans_embeddings = []
for i in range(num_chunks):
labels_T = labels[i].T
# t: (num_speakers, num_frames)
sample_offset = i * seg_m.window_shift
for j in range(num_speakers):
frames = labels_T[j]
if frames.sum() < 10:
# skip segment less than 20 frames, i.e., about 0.2 seconds
continue
start = None
start_samples = 0
idx = 0
for k in range(num_frames):
if frames[k] != 0:
if start is None:
start = k
elif start is not None:
start_samples = (
int(start / num_frames * seg_m.window_size) + sample_offset
)
end_samples = (
int(k / num_frames * seg_m.window_size) + sample_offset
)
num_samples = end_samples - start_samples
buffer[idx : idx + num_samples] = audio[start_samples:end_samples]
idx += num_samples
start = None
if start is not None:
start_samples = (
int(start / num_frames * seg_m.window_size) + sample_offset
)
end_samples = int(k / num_frames * seg_m.window_size) + sample_offset
num_samples = end_samples - start_samples
buffer[idx : idx + num_samples] = audio[start_samples:end_samples]
idx += num_samples
stream = extractor.create_stream()
stream.accept_waveform(sample_rate=seg_m.sample_rate, waveform=buffer[:idx])
stream.input_finished()
assert extractor.is_ready(stream)
embedding = extractor.compute(stream)
embedding = np.array(embedding)
ans_chunk_speaker_pair.append([i, j])
ans_embeddings.append(embedding)
assert len(ans_chunk_speaker_pair) == len(ans_embeddings), (
len(ans_chunk_speaker_pair),
len(ans_embeddings),
)
return ans_chunk_speaker_pair, np.array(ans_embeddings)
def main():
args = get_args()
assert Path(args.seg_model).is_file(), args.seg_model
assert Path(args.wav).is_file(), args.wav
seg_m = OnnxSegmentationModel(args.seg_model)
audio = load_wav(args.wav, seg_m.sample_rate)
# audio: (num_samples,)
num = (audio.shape[0] - seg_m.window_size) // seg_m.window_shift + 1
samples = as_strided(
audio,
shape=(num, seg_m.window_size),
strides=(seg_m.window_shift * audio.strides[0], audio.strides[0]),
)
# or use torch.Tensor.unfold
# samples = torch.from_numpy(audio).unfold(0, seg_m.window_size, seg_m.window_shift).numpy()
if (
audio.shape[0] < seg_m.window_size
or (audio.shape[0] - seg_m.window_size) % seg_m.window_shift > 0
):
has_last_chunk = True
else:
has_last_chunk = False
num_chunks = samples.shape[0]
batch_size = 32
output = []
for i in range(0, num_chunks, batch_size):
start = i
end = i + batch_size
# it's perfectly ok to use end > num_chunks
y = seg_m(samples[start:end])
output.append(y)
if has_last_chunk:
last_chunk = audio[num_chunks * seg_m.window_shift :] # noqa
pad_size = seg_m.window_size - last_chunk.shape[0]
last_chunk = np.pad(last_chunk, (0, pad_size))
last_chunk = np.expand_dims(last_chunk, axis=0)
y = seg_m(last_chunk)
output.append(y)
y = np.vstack(output)
# y: (num_chunks, num_frames, num_classes)
mapping = get_powerset_mapping(
num_classes=seg_m.num_classes,
num_speakers=seg_m.num_speakers,
powerset_max_classes=seg_m.powerset_max_classes,
)
labels = to_multi_label(y, mapping=mapping)
# labels: (num_chunks, num_frames, num_speakers)
inactive = (labels.sum(axis=1) == 0).astype(np.int8)
# inactive: (num_chunks, num_speakers)
speakers_per_frame = speaker_count(labels=labels, seg_m=seg_m)
# speakers_per_frame: (num_frames, speakers_per_frame)
if speakers_per_frame.max() == 0:
print("No speakers found in the audio file!")
return
# if users specify only 1 speaker for clustering, then return the
# result directly
# Now, get embeddings
chunk_speaker_pair, embeddings = get_embeddings(
args.speaker_embedding_model,
audio=audio,
labels=labels,
seg_m=seg_m,
# exclude_overlap=True,
exclude_overlap=False,
)
# chunk_speaker_pair: a list of (chunk_idx, speaker_idx)
# embeddings: (batch_size, embedding_dim)
# Please change num_clusters or threshold by yourself.
clustering_config = sherpa_onnx.FastClusteringConfig(num_clusters=2)
# clustering_config = sherpa_onnx.FastClusteringConfig(threshold=0.8)
clustering = sherpa_onnx.FastClustering(clustering_config)
cluster_labels = clustering(embeddings)
chunk_speaker_to_cluster = dict()
for (chunk_idx, speaker_idx), cluster_idx in zip(
chunk_speaker_pair, cluster_labels
):
if inactive[chunk_idx, speaker_idx] == 1:
print("skip ", chunk_idx, speaker_idx)
continue
chunk_speaker_to_cluster[(chunk_idx, speaker_idx)] = cluster_idx
num_speakers = max(cluster_labels) + 1
relabels = np.zeros((labels.shape[0], labels.shape[1], num_speakers))
for i in range(labels.shape[0]):
for j in range(labels.shape[1]):
for k in range(labels.shape[2]):
if (i, k) not in chunk_speaker_to_cluster:
continue
t = chunk_speaker_to_cluster[(i, k)]
if labels[i, j, k] == 1:
relabels[i, j, t] = 1
num_frames = (
int(
(seg_m.window_size + (relabels.shape[0] - 1) * seg_m.window_shift)
/ seg_m.receptive_field_shift
)
+ 1
)
count = np.zeros((num_frames, relabels.shape[-1]))
for i in range(relabels.shape[0]):
this_chunk = relabels[i]
start = int(i * seg_m.window_shift / seg_m.receptive_field_shift + 0.5)
end = start + this_chunk.shape[0]
count[start:end] += this_chunk
if has_last_chunk:
stop_frame = int(audio.shape[0] / seg_m.receptive_field_shift)
count = count[:stop_frame]
sorted_count = np.argsort(-count, axis=-1)
final = np.zeros((count.shape[0], count.shape[1]))
for i, (c, sc) in enumerate(zip(speakers_per_frame, sorted_count)):
for k in range(c):
final[i, sc[k]] = 1
min_duration_off = 0.5
min_duration_on = 0.3
onset = 0.5
offset = 0.5
# final: (num_frames, num_speakers)
final = final.T
for kk in range(final.shape[0]):
segment_list = []
frames = final[kk]
is_active = frames[0] > onset
start = None
if is_active:
start = 0
scale = seg_m.receptive_field_shift / seg_m.sample_rate
scale_offset = seg_m.receptive_field_size / seg_m.sample_rate * 0.5
for i in range(1, len(frames)):
if is_active:
if frames[i] < offset:
segment = Segment(
start=start * scale + scale_offset,
end=i * scale + scale_offset,
speaker=kk,
)
segment_list.append(segment)
is_active = False
else:
if frames[i] > onset:
start = i
is_active = True
if is_active:
segment = Segment(
start=start * scale + scale_offset,
end=(len(frames) - 1) * scale + scale_offset,
speaker=kk,
)
segment_list.append(segment)
if len(segment_list) > 1:
merge_segment_list(segment_list, min_duration_off=min_duration_off)
for s in segment_list:
if s.duration < min_duration_on:
continue
print(s)
if __name__ == "__main__":
main()