rvm.cpp
13.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2025 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
// ncnn model exported from https://github.com/PeterL1n/RobustVideoMatting
//
// import torch
// from torch import nn
// from model import MattingNetwork
// from model.fast_guided_filter import FastGuidedFilterRefiner
// from model.deep_guided_filter import DeepGuidedFilterRefiner
//
// class Model(nn.Module):
// def __init__(self):
// super().__init__()
//
// self.rvm = MattingNetwork('mobilenetv3').eval()
// self.rvm.load_state_dict(torch.load('rvm_mobilenetv3.pth'))
//
// self.refiner_deep = DeepGuidedFilterRefiner()
// self.refiner_fast = FastGuidedFilterRefiner()
//
// def forward_first_frame(self, src):
// return self.rvm(src)
//
// def forward(self, src, src_sm, r1, r2, r3, r4):
//
// f1, f2, f3, f4 = self.rvm.backbone(src_sm)
// f4 = self.rvm.aspp(f4)
// hid, *rec = self.rvm.decoder(src_sm, f1, f2, f3, f4, r1, r2, r3, r4)
//
// # downsample
// fgr_residual, pha = self.rvm.project_mat(hid).split([3, 1], dim=-3)
// fgr = fgr_residual + src_sm
//
// # downsample + refiner_deep
// fgr_residual_deep, pha_deep = self.refiner_deep(src, src_sm, fgr_residual, pha, hid)
// fgr_deep = fgr_residual_deep + src
//
// # downsample + refiner_fast
// fgr_residual_fast, pha_fast = self.refiner_fast(src, src_sm, fgr_residual, pha, hid)
// fgr_fast = fgr_residual_fast + src
//
// # downsample + segmentation
// seg = self.rvm.project_seg(hid)
//
// return fgr, pha, fgr_deep, pha_deep, fgr_fast, pha_fast, seg, *rec
//
// import pnnx
//
// model = Model().eval()
//
// x = torch.rand(1, 3, 512, 512)
// x2 = torch.rand(1, 3, 256, 256)
// x2_hr = torch.rand(1, 3, 1024, 1024)
//
// # generate feats via forward_first_frame, with different shapes
// fgr, pha, r1, r2, r3, r4 = model.forward_first_frame(x)
// fgr2, pha2, r12, r22, r32, r42 = model.forward_first_frame(x2)
//
// # export with dynamic shape
// pnnx.export(model, "rvm_mobilenetv3.pt", (x, x, r1, r2, r3, r4), (x2_hr, x2, r12, r22, r32, r42))
//
// and then fix refiner_fast fp16 overflow issue in ncnn.param via appending 31=1 layer feat mask
//
// BinaryOp div_58 2 1 401 399 402 0=3 31=1
//
#include "rvm.h"
#include "net.h"
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <algorithm>
RVM::RVM()
{
model_type = 0;
target_size = 512;
intra_inter = 0;
segmentation = false;
refine_deep = true;
refine_fast = false;
}
RVM::~RVM()
{
}
int RVM::load(const char* parampath, const char* modelpath, bool use_gpu)
{
rvm.clear();
// rvm.opt = ncnn::Option();
rvm.opt.use_fp16_packed = false;
rvm.opt.use_fp16_storage = false;
rvm.opt.use_fp16_arithmetic = false;
#if NCNN_VULKAN
rvm.opt.use_vulkan_compute = use_gpu;
#endif
rvm.load_param(parampath);
rvm.load_model(modelpath);
return 0;
}
void RVM::set_background_image(const cv::Mat& background)
{
if (!background.empty())
{
// Convert to BGR format if needed and ensure it's 8-bit 3-channel
cv::Mat bg_bgr;
if (background.channels() == 4)
{
cv::cvtColor(background, bg_bgr, cv::COLOR_BGRA2BGR);
}
else if (background.channels() == 1)
{
cv::cvtColor(background, bg_bgr, cv::COLOR_GRAY2BGR);
}
else
{
bg_bgr = background.clone();
}
background_image = bg_bgr;
}
}
void RVM::clear_background_image()
{
background_image.release();
}
int RVM::load(AAssetManager* mgr, const char* parampath, const char* modelpath, bool use_gpu)
{
rvm.clear();
// rvm.opt = ncnn::Option();
rvm.opt.use_fp16_packed = false;
rvm.opt.use_fp16_storage = false;
rvm.opt.use_fp16_arithmetic = false;
#if NCNN_VULKAN
rvm.opt.use_vulkan_compute = use_gpu;
#endif
rvm.load_param(mgr, parampath);
rvm.load_model(mgr, modelpath);
return 0;
}
void RVM::set_model_type(int _model_type)
{
model_type = _model_type;
}
void RVM::set_target_size(int _target_size)
{
target_size = _target_size;
}
void RVM::set_intra_inter(int _intra_inter)
{
intra_inter = _intra_inter;
}
void RVM::set_postproc_mode(bool _segmentation, bool _refine_deep, bool _refine_fast)
{
segmentation = _segmentation;
refine_deep = _refine_deep;
refine_fast = _refine_fast;
}
int RVM::detect(const cv::Mat& rgb, InterFeatures& feats, cv::Mat& fgr, cv::Mat& pha, cv::Mat& seg)
{
const int w = rgb.cols;
const int h = rgb.rows;
const int max_stride = 16;
bool refine_deep = true;
// bool refine_fast = true;
const float norm_vals[3] = {1 / 255.f, 1 / 255.f, 1 / 255.f};
ncnn::Mat in_pad;
ncnn::Mat in_small_pad;
int wpad = 0;
int hpad = 0;
bool downsample = std::max(w, h) > target_size;
if (downsample)
{
// letterbox pad to multiple of max_stride
int w2 = w;
int h2 = h;
float scale = 1.f;
if (w > h)
{
scale = (float)target_size / w;
w2 = target_size;
h2 = h2 * scale;
}
else
{
scale = (float)target_size / h;
h2 = target_size;
w2 = w2 * scale;
}
ncnn::Mat in_small = ncnn::Mat::from_pixels_resize(rgb.data, ncnn::Mat::PIXEL_RGB, w, h, w2, h2);
// letterbox pad to target_size rectangle
int w2pad = (w2 + max_stride - 1) / max_stride * max_stride - w2;
int h2pad = (h2 + max_stride - 1) / max_stride * max_stride - h2;
ncnn::copy_make_border(in_small, in_small_pad, h2pad / 2, h2pad - h2pad / 2, w2pad / 2, w2pad - w2pad / 2, ncnn::BORDER_CONSTANT, 114.f);
in_small_pad.substract_mean_normalize(0, norm_vals);
int w3 = w;
int h3 = h;
if (w > h)
{
w3 = w;
h3 = in_small_pad.h / scale;
wpad = 0;
hpad = h3 - h;
}
else
{
h3 = h;
w3 = in_small_pad.w / scale;
wpad = w3 - w;
hpad = 0;
}
ncnn::Mat in = ncnn::Mat::from_pixels(rgb.data, ncnn::Mat::PIXEL_RGB, w, h);
ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 114.f);
in_pad.substract_mean_normalize(0, norm_vals);
}
else
{
ncnn::Mat in = ncnn::Mat::from_pixels(rgb.data, ncnn::Mat::PIXEL_RGB, w, h);
// letterbox pad to target_size rectangle
wpad = (w + max_stride - 1) / max_stride * max_stride - w;
hpad = (h + max_stride - 1) / max_stride * max_stride - h;
ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 114.f);
in_pad.substract_mean_normalize(0, norm_vals);
in_small_pad = in_pad;
}
bool is_first_frame = false;
if (feats.r1.empty() && feats.r2.empty() && feats.r3.empty() && feats.r4.empty())
{
is_first_frame = true;
}
if (model_type == 0)
{
// rvm_mobilenetv3
feats.r1.create(in_small_pad.w / 2, in_small_pad.h / 2, 16);
feats.r2.create(in_small_pad.w / 4, in_small_pad.h / 4, 20);
feats.r3.create(in_small_pad.w / 8, in_small_pad.h / 8, 40);
feats.r4.create(in_small_pad.w / 16, in_small_pad.h / 16, 64);
}
else // if (model_type == 1)
{
// rvm_resnet50
feats.r1.create(in_small_pad.w / 2, in_small_pad.h / 2, 16);
feats.r2.create(in_small_pad.w / 4, in_small_pad.h / 4, 32);
feats.r3.create(in_small_pad.w / 8, in_small_pad.h / 8, 64);
feats.r4.create(in_small_pad.w / 16, in_small_pad.h / 16, 128);
}
if (intra_inter == 0 || is_first_frame)
{
feats.r1.fill(0.f);
feats.r2.fill(0.f);
feats.r3.fill(0.f);
feats.r4.fill(0.f);
}
ncnn::Extractor ex = rvm.create_extractor();
ex.input("in0", in_pad);
ex.input("in1", in_small_pad);
ex.input("in2", feats.r1);
ex.input("in3", feats.r2);
ex.input("in4", feats.r3);
ex.input("in5", feats.r4);
ncnn::Mat out_fgr;
ncnn::Mat out_pha;
ncnn::Mat out_seg;
if (segmentation)
{
// segmentation
ex.extract("out6", out_seg);
}
else if (downsample)
{
if (refine_deep)
{
// downsample + refine deep
ex.extract("out2", out_fgr);
ex.extract("out3", out_pha);
}
else // if (refine_fast)
{
// downsample + refine fast
ex.extract("out4", out_fgr);
ex.extract("out5", out_pha);
}
}
else
{
// no downsample
ex.extract("out0", out_fgr);
ex.extract("out1", out_pha);
}
if (intra_inter == 1)
{
// feats
ex.extract("out7", feats.r1, 1);
ex.extract("out8", feats.r2, 1);
ex.extract("out9", feats.r3, 1);
ex.extract("out10", feats.r4, 1);
}
const float denorm_vals[3] = {255.f, 255.f, 255.f};
if (segmentation)
{
out_seg.substract_mean_normalize(0, denorm_vals);
seg.create(in_pad.h, in_pad.w, CV_8UC1);
out_seg.to_pixels_resize(seg.data, ncnn::Mat::PIXEL_GRAY, in_pad.w, in_pad.h);
// cut letterbox pad
seg = seg(cv::Rect(wpad / 2, hpad / 2, w, h));
}
else
{
out_fgr.substract_mean_normalize(0, denorm_vals);
fgr.create(out_fgr.h, out_fgr.w, CV_8UC3);
out_fgr.to_pixels(fgr.data, ncnn::Mat::PIXEL_RGB);
out_pha.substract_mean_normalize(0, denorm_vals);
pha.create(out_pha.h, out_pha.w, CV_8UC1);
out_pha.to_pixels(pha.data, ncnn::Mat::PIXEL_GRAY);
// cut letterbox pad
fgr = fgr(cv::Rect(wpad / 2, hpad / 2, w, h));
pha = pha(cv::Rect(wpad / 2, hpad / 2, w, h));
}
return 0;
}
int RVM::draw(cv::Mat& rgb, const cv::Mat& fgr, const cv::Mat& pha, const cv::Mat& seg)
{
const int w = rgb.cols;
const int h = rgb.rows;
// Default background color (RGB: 120, 255, 155)
const cv::Vec3b default_bg_color(120, 255, 155);
if (!fgr.empty() && !pha.empty())
{
// composite
for (int y = 0; y < h; y++)
{
const uchar* pf = fgr.ptr<const uchar>(y);
const uchar* pa = pha.ptr<const uchar>(y);
uchar* p = rgb.ptr<uchar>(y);
for (int x = 0; x < w; x++)
{
const float alpha = pa[0] / 255.f;
const float beta = 1 - alpha;
cv::Vec3b bg_pixel;
if (!background_image.empty())
{
// Use background image pixel
int bg_x = x * background_image.cols / w;
int bg_y = y * background_image.rows / h;
bg_x = std::min(bg_x, background_image.cols - 1);
bg_y = std::min(bg_y, background_image.rows - 1);
bg_pixel = background_image.at<cv::Vec3b>(bg_y, bg_x);
std::swap(bg_pixel[0], bg_pixel[2]);
}
else
{
// Use default background color
bg_pixel = default_bg_color;
}
p[0] = cv::saturate_cast<uchar>(pf[0] * alpha + bg_pixel[0] * beta);
p[1] = cv::saturate_cast<uchar>(pf[1] * alpha + bg_pixel[1] * beta);
p[2] = cv::saturate_cast<uchar>(pf[2] * alpha + bg_pixel[2] * beta);
pf += 3;
pa += 1;
p += 3;
}
}
}
else if (!seg.empty())
{
// composite seg
for (int y = 0; y < h; y++)
{
uchar* p = rgb.ptr<uchar>(y);
const uchar* ps = seg.ptr<const uchar>(y);
for (int x = 0; x < w; x++)
{
const float alpha = ps[0] / 255.f;
const float beta = 1 - alpha;
cv::Vec3b bg_pixel;
if (!background_image.empty())
{
// Use background image pixel
int bg_x = x * background_image.cols / w;
int bg_y = y * background_image.rows / h;
bg_x = std::min(bg_x, background_image.cols - 1);
bg_y = std::min(bg_y, background_image.rows - 1);
bg_pixel = background_image.at<cv::Vec3b>(bg_y, bg_x);
std::swap(bg_pixel[0], bg_pixel[2]);
}
else
{
// Use default background color
bg_pixel = default_bg_color;
}
p[0] = cv::saturate_cast<uchar>(p[0] * alpha + bg_pixel[0] * beta);
p[1] = cv::saturate_cast<uchar>(p[1] * alpha + bg_pixel[1] * beta);
p[2] = cv::saturate_cast<uchar>(p[2] * alpha + bg_pixel[2] * beta);
ps += 1;
p += 3;
}
}
}
return 0;
}