winlin

Merge branch 'master' of github.com:winlinvip/simple-rtmp-server

... ... @@ -167,6 +167,8 @@ See also: [Performance Test Guide](https://github.com/winlinvip/simple-rtmp-serv
* nginx v1.5.0: 139524 lines <br/>
### History
* v1.0, 2014-03-19, add vn/an for FFMPEG to drop video/audio for radio stream.
* v1.0, 2014-03-19, refine handshake, client support coplex handshake, add utest.
* v1.0, 2014-03-16, support ARM([debian armhf, v7cpu](https://github.com/winlinvip/simple-rtmp-server/wiki/SrsLinuxArm)) with rtmp/ssl/hls/librtmp.
* v1.0, 2014-03-12, finish utest for amf0 codec.
* v1.0, 2014-03-06, add gperftools for mem leak detect, mem/cpu profile.
... ...
... ... @@ -291,6 +291,25 @@ vhost audio.transcode.vhost.com {
}
}
}
# disable video, transcode/copy audio.
# for example, publish pure audio stream.
vhost vn.transcode.vhost.com {
transcode {
enabled on;
ffmpeg ./objs/ffmpeg/bin/ffmpeg;
engine vn {
enabled on;
vcodec vn;
acodec libaacplus;
abitrate 45;
asample_rate 44100;
achannels 2;
aparams {
}
output rtmp://127.0.0.1:[port]/[app]?vhost=[vhost]/[stream]_[engine];
}
}
}
# ffmpeg-copy(forward implements by ffmpeg).
# copy the video and audio to a new stream.
vhost copy.transcode.vhost.com {
... ... @@ -333,6 +352,7 @@ vhost all.transcode.vhost.com {
# video encoder name. can be:
# libx264: use h.264(libx264) video encoder.
# copy: donot encoder the video stream, copy it.
# vn: disable video output.
vcodec libx264;
# video bitrate, in kbps
vbitrate 1500;
... ... @@ -364,6 +384,7 @@ vhost all.transcode.vhost.com {
# audio encoder name. can be:
# libaacplus: use aac(libaacplus) audio encoder.
# copy: donot encoder the audio stream, copy it.
# an: disable audio output.
acodec libaacplus;
# audio bitrate, in kbps. [16, 72] for libaacplus.
abitrate 70;
... ...
... ... @@ -42,6 +42,8 @@ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifdef SRS_FFMPEG
#define SRS_ENCODER_COPY "copy"
#define SRS_ENCODER_NO_VIDEO "vn"
#define SRS_ENCODER_NO_AUDIO "an"
#define SRS_ENCODER_VCODEC "libx264"
#define SRS_ENCODER_ACODEC "libaacplus"
... ... @@ -138,7 +140,13 @@ int SrsFFMPEG::initialize(SrsRequest* req, SrsConfDirective* engine)
}
_transcoded_url.push_back(output);
if (vcodec != SRS_ENCODER_COPY) {
if (vcodec == SRS_ENCODER_NO_VIDEO && acodec == SRS_ENCODER_NO_AUDIO) {
ret = ERROR_ENCODER_VCODEC;
srs_warn("video and audio disabled. ret=%d", ret);
return ret;
}
if (vcodec != SRS_ENCODER_COPY && vcodec != SRS_ENCODER_NO_VIDEO) {
if (vcodec != SRS_ENCODER_VCODEC) {
ret = ERROR_ENCODER_VCODEC;
srs_error("invalid vcodec, must be %s, actual %s, ret=%d",
... ... @@ -182,7 +190,7 @@ int SrsFFMPEG::initialize(SrsRequest* req, SrsConfDirective* engine)
}
}
if (acodec != SRS_ENCODER_COPY) {
if (acodec != SRS_ENCODER_COPY && acodec != SRS_ENCODER_NO_AUDIO) {
if (acodec != SRS_ENCODER_ACODEC) {
ret = ERROR_ENCODER_ACODEC;
srs_error("invalid acodec, must be %s, actual %s, ret=%d",
... ... @@ -254,11 +262,15 @@ int SrsFFMPEG::start()
}
// video specified.
params.push_back("-vcodec");
params.push_back(vcodec);
if (vcodec != SRS_ENCODER_NO_VIDEO) {
params.push_back("-vcodec");
params.push_back(vcodec);
} else {
params.push_back("-vn");
}
// the codec params is disabled when copy
if (vcodec != SRS_ENCODER_COPY) {
if (vcodec != SRS_ENCODER_COPY && vcodec != SRS_ENCODER_NO_VIDEO) {
params.push_back("-b:v");
snprintf(tmp, sizeof(tmp), "%d", vbitrate * 1000);
params.push_back(tmp);
... ... @@ -299,11 +311,15 @@ int SrsFFMPEG::start()
}
// audio specified.
params.push_back("-acodec");
params.push_back(acodec);
if (acodec != SRS_ENCODER_NO_AUDIO) {
params.push_back("-acodec");
params.push_back(acodec);
} else {
params.push_back("-an");
}
// the codec params is disabled when copy
if (acodec != SRS_ENCODER_COPY) {
if (acodec != SRS_ENCODER_COPY && acodec != SRS_ENCODER_NO_AUDIO) {
params.push_back("-b:a");
snprintf(tmp, sizeof(tmp), "%d", abitrate * 1000);
params.push_back(tmp);
... ...
... ... @@ -31,7 +31,7 @@ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
// current release version
#define VERSION_MAJOR "0"
#define VERSION_MINOR "9"
#define VERSION_REVISION "21"
#define VERSION_REVISION "22"
#define RTMP_SIG_SRS_VERSION VERSION_MAJOR"."VERSION_MINOR"."VERSION_REVISION
// server info.
#define RTMP_SIG_SRS_KEY "srs"
... ...
... ... @@ -32,924 +32,944 @@ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include <srs_protocol_utility.hpp>
#include <srs_protocol_rtmp.hpp>
using namespace srs;
#ifdef SRS_SSL
// 68bytes FMS key which is used to sign the sever packet.
u_int8_t srs::SrsGenuineFMSKey[] = {
0x47, 0x65, 0x6e, 0x75, 0x69, 0x6e, 0x65, 0x20,
0x41, 0x64, 0x6f, 0x62, 0x65, 0x20, 0x46, 0x6c,
0x61, 0x73, 0x68, 0x20, 0x4d, 0x65, 0x64, 0x69,
0x61, 0x20, 0x53, 0x65, 0x72, 0x76, 0x65, 0x72,
0x20, 0x30, 0x30, 0x31, // Genuine Adobe Flash Media Server 001
0xf0, 0xee, 0xc2, 0x4a, 0x80, 0x68, 0xbe, 0xe8,
0x2e, 0x00, 0xd0, 0xd1, 0x02, 0x9e, 0x7e, 0x57,
0x6e, 0xec, 0x5d, 0x2d, 0x29, 0x80, 0x6f, 0xab,
0x93, 0xb8, 0xe6, 0x36, 0xcf, 0xeb, 0x31, 0xae
}; // 68
// 62bytes FP key which is used to sign the client packet.
u_int8_t srs::SrsGenuineFPKey[] = {
0x47, 0x65, 0x6E, 0x75, 0x69, 0x6E, 0x65, 0x20,
0x41, 0x64, 0x6F, 0x62, 0x65, 0x20, 0x46, 0x6C,
0x61, 0x73, 0x68, 0x20, 0x50, 0x6C, 0x61, 0x79,
0x65, 0x72, 0x20, 0x30, 0x30, 0x31, // Genuine Adobe Flash Player 001
0xF0, 0xEE, 0xC2, 0x4A, 0x80, 0x68, 0xBE, 0xE8,
0x2E, 0x00, 0xD0, 0xD1, 0x02, 0x9E, 0x7E, 0x57,
0x6E, 0xEC, 0x5D, 0x2D, 0x29, 0x80, 0x6F, 0xAB,
0x93, 0xB8, 0xE6, 0x36, 0xCF, 0xEB, 0x31, 0xAE
}; // 62
using namespace srs;
// for openssl_HMACsha256
#include <openssl/evp.h>
#include <openssl/hmac.h>
int srs::openssl_HMACsha256(const void* data, int data_size, const void* key, int key_size, void* digest)
{
HMAC_CTX ctx;
HMAC_CTX_init(&ctx);
HMAC_Init_ex(&ctx, (unsigned char*) key, key_size, EVP_sha256(), NULL);
HMAC_Update(&ctx, (unsigned char *) data, data_size);
unsigned int digest_size;
HMAC_Final(&ctx, (unsigned char *) digest, &digest_size);
HMAC_CTX_cleanup(&ctx);
if (digest_size != 32) {
return ERROR_OpenSslSha256DigestSize;
}
return ERROR_SUCCESS;
}
// for __openssl_generate_key
#include <openssl/dh.h>
#define RFC2409_PRIME_1024 \
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" \
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD" \
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" \
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" \
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381" \
"FFFFFFFFFFFFFFFF"
int __openssl_generate_key(
u_int8_t*& _private_key, u_int8_t*& _public_key, int32_t& size,
DH*& pdh, int32_t& bits_count, u_int8_t*& shared_key, int32_t& shared_key_length, BIGNUM*& peer_public_key
){
int ret = ERROR_SUCCESS;
//1. Create the DH
if ((pdh = DH_new()) == NULL) {
ret = ERROR_OpenSslCreateDH;
return ret;
}
//2. Create his internal p and g
if ((pdh->p = BN_new()) == NULL) {
ret = ERROR_OpenSslCreateP;
return ret;
}
if ((pdh->g = BN_new()) == NULL) {
ret = ERROR_OpenSslCreateG;
return ret;
}
//3. initialize p, g and key length
if (BN_hex2bn(&pdh->p, RFC2409_PRIME_1024) == 0) {
ret = ERROR_OpenSslParseP1024;
return ret;
}
if (BN_set_word(pdh->g, 2) != 1) {
ret = ERROR_OpenSslSetG;
return ret;
}
//4. Set the key length
pdh->length = bits_count;
//5. Generate private and public key
if (DH_generate_key(pdh) != 1) {
ret = ERROR_OpenSslGenerateDHKeys;
return ret;
}
// CreateSharedKey
if (pdh == NULL) {
ret = ERROR_OpenSslGenerateDHKeys;
return ret;
}
if (shared_key_length != 0 || shared_key != NULL) {
ret = ERROR_OpenSslShareKeyComputed;
return ret;
}
shared_key_length = DH_size(pdh);
if (shared_key_length <= 0 || shared_key_length > 1024) {
ret = ERROR_OpenSslGetSharedKeySize;
return ret;
}
shared_key = new u_int8_t[shared_key_length];
memset(shared_key, 0, shared_key_length);
peer_public_key = BN_bin2bn(_private_key, size, 0);
if (peer_public_key == NULL) {
ret = ERROR_OpenSslGetPeerPublicKey;
return ret;
}
if (DH_compute_key(shared_key, peer_public_key, pdh) == -1) {
ret = ERROR_OpenSslComputeSharedKey;
return ret;
}
// CopyPublicKey
if (pdh == NULL) {
ret = ERROR_OpenSslComputeSharedKey;
return ret;
}
int32_t keySize = BN_num_bytes(pdh->pub_key);
if ((keySize <= 0) || (size <= 0) || (keySize > size)) {
//("CopyPublicKey failed due to either invalid DH state or invalid call"); return ret;
ret = ERROR_OpenSslInvalidDHState;
return ret;
}
if (BN_bn2bin(pdh->pub_key, _public_key) != keySize) {
//("Unable to copy key"); return ret;
ret = ERROR_OpenSslCopyKey;
return ret;
}
return ret;
}
int openssl_generate_key(char* _private_key, char* _public_key, int32_t size)
{
int ret = ERROR_SUCCESS;
// Initialize
DH* pdh = NULL;
int32_t bits_count = 1024;
u_int8_t* shared_key = NULL;
int32_t shared_key_length = 0;
BIGNUM* peer_public_key = NULL;
ret = __openssl_generate_key(
(u_int8_t*&)_private_key, (u_int8_t*&)_public_key, size,
pdh, bits_count, shared_key, shared_key_length, peer_public_key
);
if (pdh != NULL) {
if (pdh->p != NULL) {
BN_free(pdh->p);
pdh->p = NULL;
}
if (pdh->g != NULL) {
BN_free(pdh->g);
pdh->g = NULL;
}
DH_free(pdh);
pdh = NULL;
}
if (shared_key != NULL) {
delete[] shared_key;
shared_key = NULL;
}
if (peer_public_key != NULL) {
BN_free(peer_public_key);
peer_public_key = NULL;
}
return ret;
}
// calc the offset of key,
// the key->offset cannot be used as the offset of key.
int srs_key_block_get_offset(key_block* key)
{
int max_offset_size = 764 - 128 - 4;
int offset = 0;
u_int8_t* pp = (u_int8_t*)&key->offset;
offset += *pp++;
offset += *pp++;
offset += *pp++;
offset += *pp++;
return offset % max_offset_size;
}
// create new key block data.
// if created, user must free it by srs_key_block_free
void srs_key_block_init(key_block* key)
namespace srs
{
key->offset = (int32_t)rand();
key->random0 = NULL;
key->random1 = NULL;
int offset = srs_key_block_get_offset(key);
srs_assert(offset >= 0);
// 68bytes FMS key which is used to sign the sever packet.
u_int8_t SrsGenuineFMSKey[] = {
0x47, 0x65, 0x6e, 0x75, 0x69, 0x6e, 0x65, 0x20,
0x41, 0x64, 0x6f, 0x62, 0x65, 0x20, 0x46, 0x6c,
0x61, 0x73, 0x68, 0x20, 0x4d, 0x65, 0x64, 0x69,
0x61, 0x20, 0x53, 0x65, 0x72, 0x76, 0x65, 0x72,
0x20, 0x30, 0x30, 0x31, // Genuine Adobe Flash Media Server 001
0xf0, 0xee, 0xc2, 0x4a, 0x80, 0x68, 0xbe, 0xe8,
0x2e, 0x00, 0xd0, 0xd1, 0x02, 0x9e, 0x7e, 0x57,
0x6e, 0xec, 0x5d, 0x2d, 0x29, 0x80, 0x6f, 0xab,
0x93, 0xb8, 0xe6, 0x36, 0xcf, 0xeb, 0x31, 0xae
}; // 68
// 62bytes FP key which is used to sign the client packet.
u_int8_t SrsGenuineFPKey[] = {
0x47, 0x65, 0x6E, 0x75, 0x69, 0x6E, 0x65, 0x20,
0x41, 0x64, 0x6F, 0x62, 0x65, 0x20, 0x46, 0x6C,
0x61, 0x73, 0x68, 0x20, 0x50, 0x6C, 0x61, 0x79,
0x65, 0x72, 0x20, 0x30, 0x30, 0x31, // Genuine Adobe Flash Player 001
0xF0, 0xEE, 0xC2, 0x4A, 0x80, 0x68, 0xBE, 0xE8,
0x2E, 0x00, 0xD0, 0xD1, 0x02, 0x9E, 0x7E, 0x57,
0x6E, 0xEC, 0x5D, 0x2D, 0x29, 0x80, 0x6F, 0xAB,
0x93, 0xB8, 0xE6, 0x36, 0xCF, 0xEB, 0x31, 0xAE
}; // 62
int openssl_HMACsha256(const void* data, int data_size, const void* key, int key_size, void* digest)
{
HMAC_CTX ctx;
HMAC_CTX_init(&ctx);
HMAC_Init_ex(&ctx, (unsigned char*) key, key_size, EVP_sha256(), NULL);
HMAC_Update(&ctx, (unsigned char *) data, data_size);
key->random0_size = offset;
if (key->random0_size > 0) {
key->random0 = new char[key->random0_size];
srs_random_generate(key->random0, key->random0_size);
}
unsigned int digest_size;
HMAC_Final(&ctx, (unsigned char *) digest, &digest_size);
HMAC_CTX_cleanup(&ctx);
if (digest_size != 32) {
return ERROR_OpenSslSha256DigestSize;
}
return ERROR_SUCCESS;
}
#define RFC2409_PRIME_1024 \
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" \
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD" \
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" \
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" \
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381" \
"FFFFFFFFFFFFFFFF"
int __openssl_generate_key(
u_int8_t* _private_key, u_int8_t* _public_key, int32_t& size,
DH*& pdh, int32_t& bits_count, u_int8_t*& shared_key, int32_t& shared_key_length, BIGNUM*& peer_public_key
){
int ret = ERROR_SUCCESS;
//1. Create the DH
if ((pdh = DH_new()) == NULL) {
ret = ERROR_OpenSslCreateDH;
return ret;
}
srs_random_generate(key->key, sizeof(key->key));
//2. Create his internal p and g
if ((pdh->p = BN_new()) == NULL) {
ret = ERROR_OpenSslCreateP;
return ret;
}
if ((pdh->g = BN_new()) == NULL) {
ret = ERROR_OpenSslCreateG;
return ret;
}
key->random1_size = 764 - offset - 128 - 4;
if (key->random1_size > 0) {
key->random1 = new char[key->random1_size];
srs_random_generate(key->random1, key->random1_size);
}
}
// parse key block from c1s1.
// if created, user must free it by srs_key_block_free
// @c1s1_key_bytes the key start bytes, maybe c1s1 or c1s1+764
int srs_key_block_parse(key_block* key, char* c1s1_key_bytes)
{
int ret = ERROR_SUCCESS;
char* pp = c1s1_key_bytes + 764;
//3. initialize p, g and key length
if (BN_hex2bn(&pdh->p, RFC2409_PRIME_1024) == 0) {
ret = ERROR_OpenSslParseP1024;
return ret;
}
if (BN_set_word(pdh->g, 2) != 1) {
ret = ERROR_OpenSslSetG;
return ret;
}
pp -= sizeof(int32_t);
key->offset = *(int32_t*)pp;
//4. Set the key length
pdh->length = bits_count;
key->random0 = NULL;
key->random1 = NULL;
//5. Generate private and public key
if (DH_generate_key(pdh) != 1) {
ret = ERROR_OpenSslGenerateDHKeys;
return ret;
}
int offset = srs_key_block_get_offset(key);
srs_assert(offset >= 0);
// CreateSharedKey
if (pdh == NULL) {
ret = ERROR_OpenSslGenerateDHKeys;
return ret;
}
pp = c1s1_key_bytes;
key->random0_size = offset;
if (key->random0_size > 0) {
key->random0 = new char[key->random0_size];
memcpy(key->random0, pp, key->random0_size);
}
pp += key->random0_size;
if (shared_key_length != 0 || shared_key != NULL) {
ret = ERROR_OpenSslShareKeyComputed;
return ret;
}
memcpy(key->key, pp, sizeof(key->key));
pp += sizeof(key->key);
shared_key_length = DH_size(pdh);
if (shared_key_length <= 0 || shared_key_length > 1024) {
ret = ERROR_OpenSslGetSharedKeySize;
return ret;
}
shared_key = new u_int8_t[shared_key_length];
memset(shared_key, 0, shared_key_length);
key->random1_size = 764 - offset - 128 - 4;
if (key->random1_size > 0) {
key->random1 = new char[key->random1_size];
memcpy(key->random1, pp, key->random1_size);
}
peer_public_key = BN_bin2bn(_private_key, size, 0);
if (peer_public_key == NULL) {
ret = ERROR_OpenSslGetPeerPublicKey;
return ret;
}
return ret;
}
// free the block data create by
// srs_key_block_init or srs_key_block_parse
void srs_key_block_free(key_block* key)
{
if (key->random0) {
srs_freepa(key->random0);
}
if (key->random1) {
srs_freepa(key->random1);
}
}
// calc the offset of digest,
// the key->offset cannot be used as the offset of digest.
int srs_digest_block_get_offset(digest_block* digest)
{
int max_offset_size = 764 - 32 - 4;
int offset = 0;
u_int8_t* pp = (u_int8_t*)&digest->offset;
offset += *pp++;
offset += *pp++;
offset += *pp++;
offset += *pp++;
return offset % max_offset_size;
}
// create new digest block data.
// if created, user must free it by srs_digest_block_free
void srs_digest_block_init(digest_block* digest)
{
digest->offset = (int32_t)rand();
digest->random0 = NULL;
digest->random1 = NULL;
if (DH_compute_key(shared_key, peer_public_key, pdh) == -1) {
ret = ERROR_OpenSslComputeSharedKey;
return ret;
}
int offset = srs_digest_block_get_offset(digest);
srs_assert(offset >= 0);
// CopyPublicKey
if (pdh == NULL) {
ret = ERROR_OpenSslComputeSharedKey;
return ret;
}
int32_t keySize = BN_num_bytes(pdh->pub_key);
if ((keySize <= 0) || (size <= 0) || (keySize > size)) {
//("CopyPublicKey failed due to either invalid DH state or invalid call"); return ret;
ret = ERROR_OpenSslInvalidDHState;
return ret;
}
digest->random0_size = offset;
if (digest->random0_size > 0) {
digest->random0 = new char[digest->random0_size];
srs_random_generate(digest->random0, digest->random0_size);
if (BN_bn2bin(pdh->pub_key, _public_key) != keySize) {
//("Unable to copy key"); return ret;
ret = ERROR_OpenSslCopyKey;
return ret;
}
return ret;
}
int openssl_generate_key(char* _private_key, char* _public_key, int32_t size)
{
int ret = ERROR_SUCCESS;
srs_random_generate(digest->digest, sizeof(digest->digest));
digest->random1_size = 764 - 4 - offset - 32;
if (digest->random1_size > 0) {
digest->random1 = new char[digest->random1_size];
srs_random_generate(digest->random1, digest->random1_size);
}
}
// parse digest block from c1s1.
// if created, user must free it by srs_digest_block_free
// @c1s1_digest_bytes the digest start bytes, maybe c1s1 or c1s1+764
int srs_digest_block_parse(digest_block* digest, char* c1s1_digest_bytes)
{
int ret = ERROR_SUCCESS;
char* pp = c1s1_digest_bytes;
// Initialize
DH* pdh = NULL;
int32_t bits_count = 1024;
u_int8_t* shared_key = NULL;
int32_t shared_key_length = 0;
BIGNUM* peer_public_key = NULL;
ret = __openssl_generate_key(
(u_int8_t*)_private_key, (u_int8_t*)_public_key, size,
pdh, bits_count, shared_key, shared_key_length, peer_public_key
);
if (pdh != NULL) {
if (pdh->p != NULL) {
BN_free(pdh->p);
pdh->p = NULL;
}
if (pdh->g != NULL) {
BN_free(pdh->g);
pdh->g = NULL;
}
DH_free(pdh);
pdh = NULL;
}
digest->offset = *(int32_t*)pp;
pp += sizeof(int32_t);
if (shared_key != NULL) {
delete[] shared_key;
shared_key = NULL;
}
digest->random0 = NULL;
digest->random1 = NULL;
if (peer_public_key != NULL) {
BN_free(peer_public_key);
peer_public_key = NULL;
}
int offset = srs_digest_block_get_offset(digest);
srs_assert(offset >= 0);
return ret;
}
digest->random0_size = offset;
if (digest->random0_size > 0) {
digest->random0 = new char[digest->random0_size];
memcpy(digest->random0, pp, digest->random0_size);
// calc the offset of key,
// the key->offset cannot be used as the offset of key.
int srs_key_block_get_offset(key_block* key)
{
int max_offset_size = 764 - 128 - 4;
int offset = 0;
u_int8_t* pp = (u_int8_t*)&key->offset;
offset += *pp++;
offset += *pp++;
offset += *pp++;
offset += *pp++;
return offset % max_offset_size;
}
// create new key block data.
// if created, user must free it by srs_key_block_free
void srs_key_block_init(key_block* key)
{
key->offset = (int32_t)rand();
key->random0 = NULL;
key->random1 = NULL;
int offset = srs_key_block_get_offset(key);
srs_assert(offset >= 0);
key->random0_size = offset;
if (key->random0_size > 0) {
key->random0 = new char[key->random0_size];
srs_random_generate(key->random0, key->random0_size);
}
srs_random_generate(key->key, sizeof(key->key));
key->random1_size = 764 - offset - 128 - 4;
if (key->random1_size > 0) {
key->random1 = new char[key->random1_size];
srs_random_generate(key->random1, key->random1_size);
}
}
pp += digest->random0_size;
memcpy(digest->digest, pp, sizeof(digest->digest));
pp += sizeof(digest->digest);
// parse key block from c1s1.
// if created, user must free it by srs_key_block_free
// @c1s1_key_bytes the key start bytes, maybe c1s1 or c1s1+764
int srs_key_block_parse(key_block* key, char* c1s1_key_bytes)
{
int ret = ERROR_SUCCESS;
digest->random1_size = 764 - 4 - offset - 32;
if (digest->random1_size > 0) {
digest->random1 = new char[digest->random1_size];
memcpy(digest->random1, pp, digest->random1_size);
char* pp = c1s1_key_bytes + 764;
pp -= sizeof(int32_t);
key->offset = *(int32_t*)pp;
key->random0 = NULL;
key->random1 = NULL;
int offset = srs_key_block_get_offset(key);
srs_assert(offset >= 0);
pp = c1s1_key_bytes;
key->random0_size = offset;
if (key->random0_size > 0) {
key->random0 = new char[key->random0_size];
memcpy(key->random0, pp, key->random0_size);
}
pp += key->random0_size;
memcpy(key->key, pp, sizeof(key->key));
pp += sizeof(key->key);
key->random1_size = 764 - offset - 128 - 4;
if (key->random1_size > 0) {
key->random1 = new char[key->random1_size];
memcpy(key->random1, pp, key->random1_size);
}
return ret;
}
return ret;
}
// free the block data create by
// srs_digest_block_init or srs_digest_block_parse
void srs_digest_block_free(digest_block* digest)
{
if (digest->random0) {
srs_freepa(digest->random0);
}
if (digest->random1) {
srs_freepa(digest->random1);
}
}
void __srs_time_copy_to(char*& pp, int32_t time)
{
// 4bytes time
*(int32_t*)pp = time;
pp += 4;
}
void __srs_version_copy_to(char*& pp, int32_t version)
{
// 4bytes version
*(int32_t*)pp = version;
pp += 4;
}
void __srs_key_copy_to(char*& pp, key_block* key)
{
// 764bytes key block
if (key->random0_size > 0) {
memcpy(pp, key->random0, key->random0_size);
// free the block data create by
// srs_key_block_init or srs_key_block_parse
void srs_key_block_free(key_block* key)
{
if (key->random0) {
srs_freepa(key->random0);
}
if (key->random1) {
srs_freepa(key->random1);
}
}
pp += key->random0_size;
memcpy(pp, key->key, sizeof(key->key));
pp += sizeof(key->key);
if (key->random1_size > 0) {
memcpy(pp, key->random1, key->random1_size);
// calc the offset of digest,
// the key->offset cannot be used as the offset of digest.
int srs_digest_block_get_offset(digest_block* digest)
{
int max_offset_size = 764 - 32 - 4;
int offset = 0;
u_int8_t* pp = (u_int8_t*)&digest->offset;
offset += *pp++;
offset += *pp++;
offset += *pp++;
offset += *pp++;
return offset % max_offset_size;
}
// create new digest block data.
// if created, user must free it by srs_digest_block_free
void srs_digest_block_init(digest_block* digest)
{
digest->offset = (int32_t)rand();
digest->random0 = NULL;
digest->random1 = NULL;
int offset = srs_digest_block_get_offset(digest);
srs_assert(offset >= 0);
digest->random0_size = offset;
if (digest->random0_size > 0) {
digest->random0 = new char[digest->random0_size];
srs_random_generate(digest->random0, digest->random0_size);
}
srs_random_generate(digest->digest, sizeof(digest->digest));
digest->random1_size = 764 - 4 - offset - 32;
if (digest->random1_size > 0) {
digest->random1 = new char[digest->random1_size];
srs_random_generate(digest->random1, digest->random1_size);
}
}
pp += key->random1_size;
*(int32_t*)pp = key->offset;
pp += 4;
}
void __srs_digest_copy_to(char*& pp, digest_block* digest, bool with_digest)
{
// 732bytes digest block without the 32bytes digest-data
// nbytes digest block part1
*(int32_t*)pp = digest->offset;
pp += 4;
// parse digest block from c1s1.
// if created, user must free it by srs_digest_block_free
// @c1s1_digest_bytes the digest start bytes, maybe c1s1 or c1s1+764
int srs_digest_block_parse(digest_block* digest, char* c1s1_digest_bytes)
{
int ret = ERROR_SUCCESS;
if (digest->random0_size > 0) {
memcpy(pp, digest->random0, digest->random0_size);
char* pp = c1s1_digest_bytes;
digest->offset = *(int32_t*)pp;
pp += sizeof(int32_t);
digest->random0 = NULL;
digest->random1 = NULL;
int offset = srs_digest_block_get_offset(digest);
srs_assert(offset >= 0);
digest->random0_size = offset;
if (digest->random0_size > 0) {
digest->random0 = new char[digest->random0_size];
memcpy(digest->random0, pp, digest->random0_size);
}
pp += digest->random0_size;
memcpy(digest->digest, pp, sizeof(digest->digest));
pp += sizeof(digest->digest);
digest->random1_size = 764 - 4 - offset - 32;
if (digest->random1_size > 0) {
digest->random1 = new char[digest->random1_size];
memcpy(digest->random1, pp, digest->random1_size);
}
return ret;
}
pp += digest->random0_size;
// digest
if (with_digest) {
memcpy(pp, digest->digest, 32);
pp += 32;
// free the block data create by
// srs_digest_block_init or srs_digest_block_parse
void srs_digest_block_free(digest_block* digest)
{
if (digest->random0) {
srs_freepa(digest->random0);
}
if (digest->random1) {
srs_freepa(digest->random1);
}
}
// nbytes digest block part2
if (digest->random1_size > 0) {
memcpy(pp, digest->random1, digest->random1_size);
void __srs_time_copy_to(char*& pp, int32_t time)
{
// 4bytes time
*(int32_t*)pp = time;
pp += 4;
}
pp += digest->random1_size;
}
/**
* copy whole c1s1 to bytes.
*/
void srs_schema0_copy_to(char* bytes, bool with_digest,
int32_t time, int32_t version, key_block* key, digest_block* digest)
{
char* pp = bytes;
__srs_time_copy_to(pp, time);
__srs_version_copy_to(pp, version);
__srs_key_copy_to(pp, key);
__srs_digest_copy_to(pp, digest, with_digest);
if (with_digest) {
srs_assert(pp - bytes == 1536);
} else {
srs_assert(pp - bytes == 1536 - 32);
void __srs_version_copy_to(char*& pp, int32_t version)
{
// 4bytes version
*(int32_t*)pp = version;
pp += 4;
}
}
void srs_schema1_copy_to(char* bytes, bool with_digest,
int32_t time, int32_t version, digest_block* digest, key_block* key)
{
char* pp = bytes;
__srs_time_copy_to(pp, time);
__srs_version_copy_to(pp, version);
__srs_digest_copy_to(pp, digest, with_digest);
__srs_key_copy_to(pp, key);
if (with_digest) {
srs_assert(pp - bytes == 1536);
} else {
srs_assert(pp - bytes == 1536 - 32);
void __srs_key_copy_to(char*& pp, key_block* key)
{
// 764bytes key block
if (key->random0_size > 0) {
memcpy(pp, key->random0, key->random0_size);
}
pp += key->random0_size;
memcpy(pp, key->key, sizeof(key->key));
pp += sizeof(key->key);
if (key->random1_size > 0) {
memcpy(pp, key->random1, key->random1_size);
}
pp += key->random1_size;
*(int32_t*)pp = key->offset;
pp += 4;
}
void __srs_digest_copy_to(char*& pp, digest_block* digest, bool with_digest)
{
// 732bytes digest block without the 32bytes digest-data
// nbytes digest block part1
*(int32_t*)pp = digest->offset;
pp += 4;
if (digest->random0_size > 0) {
memcpy(pp, digest->random0, digest->random0_size);
}
pp += digest->random0_size;
// digest
if (with_digest) {
memcpy(pp, digest->digest, 32);
pp += 32;
}
// nbytes digest block part2
if (digest->random1_size > 0) {
memcpy(pp, digest->random1, digest->random1_size);
}
pp += digest->random1_size;
}
}
/**
* c1s1 is splited by digest:
* c1s1-part1: n bytes (time, version, key and digest-part1).
* digest-data: 32bytes
* c1s1-part2: (1536-n-32)bytes (digest-part2)
*/
char* srs::srs_bytes_join_schema0(int32_t time, int32_t version, key_block* key, digest_block* digest)
{
char* bytes = new char[1536 -32];
srs_schema0_copy_to(bytes, false, time, version, key, digest);
return bytes;
}
/**
* c1s1 is splited by digest:
* c1s1-part1: n bytes (time, version and digest-part1).
* digest-data: 32bytes
* c1s1-part2: (1536-n-32)bytes (digest-part2 and key)
*/
char* srs::srs_bytes_join_schema1(int32_t time, int32_t version, digest_block* digest, key_block* key)
{
char* bytes = new char[1536 -32];
srs_schema1_copy_to(bytes, false, time, version, digest, key);
return bytes;
}
/**
* compare the memory in bytes.
*/
bool srs::srs_bytes_equals(void* pa, void* pb, int size)
{
u_int8_t* a = (u_int8_t*)pa;
u_int8_t* b = (u_int8_t*)pb;
/**
* copy whole c1s1 to bytes.
*/
void srs_schema0_copy_to(char* bytes, bool with_digest,
int32_t time, int32_t version, key_block* key, digest_block* digest)
{
char* pp = bytes;
for(int i = 0; i < size; i++){
if(a[i] != b[i]){
return false;
__srs_time_copy_to(pp, time);
__srs_version_copy_to(pp, version);
__srs_key_copy_to(pp, key);
__srs_digest_copy_to(pp, digest, with_digest);
if (with_digest) {
srs_assert(pp - bytes == 1536);
} else {
srs_assert(pp - bytes == 1536 - 32);
}
}
return true;
}
c2s2::c2s2()
{
srs_random_generate(random, 1504);
srs_random_generate(digest, 32);
}
c2s2::~c2s2()
{
}
void c2s2::dump(char* _c2s2)
{
memcpy(_c2s2, random, 1504);
memcpy(_c2s2 + 1504, digest, 32);
}
void c2s2::parse(char* _c2s2)
{
memcpy(random, _c2s2, 1504);
memcpy(digest, _c2s2 + 1504, 32);
}
int c2s2::c2_create(c1s1* s1)
{
int ret = ERROR_SUCCESS;
void srs_schema1_copy_to(char* bytes, bool with_digest,
int32_t time, int32_t version, digest_block* digest, key_block* key)
{
char* pp = bytes;
char temp_key[OpensslHashSize];
if ((ret = openssl_HMACsha256(s1->get_digest(), 32, SrsGenuineFPKey, 62, temp_key)) != ERROR_SUCCESS) {
srs_error("create c2 temp key failed. ret=%d", ret);
return ret;
__srs_time_copy_to(pp, time);
__srs_version_copy_to(pp, version);
__srs_digest_copy_to(pp, digest, with_digest);
__srs_key_copy_to(pp, key);
if (with_digest) {
srs_assert(pp - bytes == 1536);
} else {
srs_assert(pp - bytes == 1536 - 32);
}
}
srs_verbose("generate c2 temp key success.");
char _digest[OpensslHashSize];
if ((ret = openssl_HMACsha256(random, 1504, temp_key, 32, _digest)) != ERROR_SUCCESS) {
srs_error("create c2 digest failed. ret=%d", ret);
return ret;
/**
* c1s1 is splited by digest:
* c1s1-part1: n bytes (time, version, key and digest-part1).
* digest-data: 32bytes
* c1s1-part2: (1536-n-32)bytes (digest-part2)
*/
char* srs_bytes_join_schema0(int32_t time, int32_t version, key_block* key, digest_block* digest)
{
char* bytes = new char[1536 -32];
srs_schema0_copy_to(bytes, false, time, version, key, digest);
return bytes;
}
/**
* c1s1 is splited by digest:
* c1s1-part1: n bytes (time, version and digest-part1).
* digest-data: 32bytes
* c1s1-part2: (1536-n-32)bytes (digest-part2 and key)
*/
char* srs_bytes_join_schema1(int32_t time, int32_t version, digest_block* digest, key_block* key)
{
char* bytes = new char[1536 -32];
srs_schema1_copy_to(bytes, false, time, version, digest, key);
return bytes;
}
srs_verbose("generate c2 digest success.");
memcpy(digest, _digest, 32);
return ret;
}
int c2s2::c2_validate(c1s1* s1, bool& is_valid)
{
is_valid = false;
int ret = ERROR_SUCCESS;
/**
* compare the memory in bytes.
*/
bool srs_bytes_equals(void* pa, void* pb, int size)
{
u_int8_t* a = (u_int8_t*)pa;
u_int8_t* b = (u_int8_t*)pb;
if (!a && !b) {
return true;
}
if (!a || !b) {
return false;
}
for(int i = 0; i < size; i++){
if(a[i] != b[i]){
return false;
}
}
char temp_key[OpensslHashSize];
if ((ret = openssl_HMACsha256(s1->get_digest(), 32, SrsGenuineFPKey, 62, temp_key)) != ERROR_SUCCESS) {
srs_error("create c2 temp key failed. ret=%d", ret);
return ret;
return true;
}
srs_verbose("generate c2 temp key success.");
char _digest[OpensslHashSize];
if ((ret = openssl_HMACsha256(random, 1504, temp_key, 32, _digest)) != ERROR_SUCCESS) {
srs_error("create c2 digest failed. ret=%d", ret);
return ret;
c2s2::c2s2()
{
srs_random_generate(random, 1504);
srs_random_generate(digest, 32);
}
srs_verbose("generate c2 digest success.");
is_valid = srs_bytes_equals(digest, _digest, 32);
return ret;
}
int c2s2::s2_create(c1s1* c1)
{
int ret = ERROR_SUCCESS;
char temp_key[OpensslHashSize];
if ((ret = openssl_HMACsha256(c1->get_digest(), 32, SrsGenuineFMSKey, 68, temp_key)) != ERROR_SUCCESS) {
srs_error("create s2 temp key failed. ret=%d", ret);
return ret;
c2s2::~c2s2()
{
}
srs_verbose("generate s2 temp key success.");
char _digest[OpensslHashSize];
if ((ret = openssl_HMACsha256(random, 1504, temp_key, 32, _digest)) != ERROR_SUCCESS) {
srs_error("create s2 digest failed. ret=%d", ret);
return ret;
void c2s2::dump(char* _c2s2)
{
memcpy(_c2s2, random, 1504);
memcpy(_c2s2 + 1504, digest, 32);
}
srs_verbose("generate s2 digest success.");
memcpy(digest, _digest, 32);
return ret;
}
int c2s2::s2_validate(c1s1* c1, bool& is_valid)
{
is_valid = false;
int ret = ERROR_SUCCESS;
char temp_key[OpensslHashSize];
if ((ret = openssl_HMACsha256(c1->get_digest(), 32, SrsGenuineFMSKey, 68, temp_key)) != ERROR_SUCCESS) {
srs_error("create s2 temp key failed. ret=%d", ret);
return ret;
void c2s2::parse(char* _c2s2)
{
memcpy(random, _c2s2, 1504);
memcpy(digest, _c2s2 + 1504, 32);
}
srs_verbose("generate s2 temp key success.");
char _digest[OpensslHashSize];
if ((ret = openssl_HMACsha256(random, 1504, temp_key, 32, _digest)) != ERROR_SUCCESS) {
srs_error("create s2 digest failed. ret=%d", ret);
int c2s2::c2_create(c1s1* s1)
{
int ret = ERROR_SUCCESS;
char temp_key[OpensslHashSize];
if ((ret = openssl_HMACsha256(s1->get_digest(), 32, SrsGenuineFPKey, 62, temp_key)) != ERROR_SUCCESS) {
srs_error("create c2 temp key failed. ret=%d", ret);
return ret;
}
srs_verbose("generate c2 temp key success.");
char _digest[OpensslHashSize];
if ((ret = openssl_HMACsha256(random, 1504, temp_key, 32, _digest)) != ERROR_SUCCESS) {
srs_error("create c2 digest failed. ret=%d", ret);
return ret;
}
srs_verbose("generate c2 digest success.");
memcpy(digest, _digest, 32);
return ret;
}
srs_verbose("generate s2 digest success.");
is_valid = srs_bytes_equals(digest, _digest, 32);
return ret;
}
// TODO: FIXME: move to the right position.
c1s1::c1s1()
{
schema = srs_schema_invalid;
}
c1s1::~c1s1()
{
destroy_blocks();
}
char* c1s1::get_digest()
{
srs_assert(schema != srs_schema_invalid);
if (schema == srs_schema0) {
return block1.digest.digest;
} else {
return block0.digest.digest;
}
}
void c1s1::dump(char* _c1s1)
{
srs_assert(schema != srs_schema_invalid);
if (schema == srs_schema0) {
srs_schema0_copy_to(_c1s1, true, time, version, &block0.key, &block1.digest);
} else {
srs_schema1_copy_to(_c1s1, true, time, version, &block0.digest, &block1.key);
}
}
int c1s1::parse(char* _c1s1, srs_schema_type _schema)
{
int ret = ERROR_SUCCESS;
if (_schema == srs_schema_invalid) {
ret = ERROR_RTMP_CH_SCHEMA;
srs_error("parse c1 failed. invalid schema=%d, ret=%d", _schema, ret);
int c2s2::c2_validate(c1s1* s1, bool& is_valid)
{
is_valid = false;
int ret = ERROR_SUCCESS;
char temp_key[OpensslHashSize];
if ((ret = openssl_HMACsha256(s1->get_digest(), 32, SrsGenuineFPKey, 62, temp_key)) != ERROR_SUCCESS) {
srs_error("create c2 temp key failed. ret=%d", ret);
return ret;
}
srs_verbose("generate c2 temp key success.");
char _digest[OpensslHashSize];
if ((ret = openssl_HMACsha256(random, 1504, temp_key, 32, _digest)) != ERROR_SUCCESS) {
srs_error("create c2 digest failed. ret=%d", ret);
return ret;
}
srs_verbose("generate c2 digest success.");
is_valid = srs_bytes_equals(digest, _digest, 32);
return ret;
}
destroy_blocks();
time = *(int32_t*)_c1s1;
version = *(int32_t*)(_c1s1 + 4); // client c1 version
if (_schema == srs_schema0) {
if ((ret = srs_key_block_parse(&block0.key, _c1s1 + 8)) != ERROR_SUCCESS) {
srs_error("parse the c1 key failed. ret=%d", ret);
int c2s2::s2_create(c1s1* c1)
{
int ret = ERROR_SUCCESS;
char temp_key[OpensslHashSize];
if ((ret = openssl_HMACsha256(c1->get_digest(), 32, SrsGenuineFMSKey, 68, temp_key)) != ERROR_SUCCESS) {
srs_error("create s2 temp key failed. ret=%d", ret);
return ret;
}
if ((ret = srs_digest_block_parse(&block1.digest, _c1s1 + 8 + 764)) != ERROR_SUCCESS) {
srs_error("parse the c1 digest failed. ret=%d", ret);
srs_verbose("generate s2 temp key success.");
char _digest[OpensslHashSize];
if ((ret = openssl_HMACsha256(random, 1504, temp_key, 32, _digest)) != ERROR_SUCCESS) {
srs_error("create s2 digest failed. ret=%d", ret);
return ret;
}
srs_verbose("parse c1 key-digest success");
} else if (_schema == srs_schema1) {
if ((ret = srs_digest_block_parse(&block0.digest, _c1s1 + 8)) != ERROR_SUCCESS) {
srs_error("parse the c1 key failed. ret=%d", ret);
srs_verbose("generate s2 digest success.");
memcpy(digest, _digest, 32);
return ret;
}
int c2s2::s2_validate(c1s1* c1, bool& is_valid)
{
is_valid = false;
int ret = ERROR_SUCCESS;
char temp_key[OpensslHashSize];
if ((ret = openssl_HMACsha256(c1->get_digest(), 32, SrsGenuineFMSKey, 68, temp_key)) != ERROR_SUCCESS) {
srs_error("create s2 temp key failed. ret=%d", ret);
return ret;
}
if ((ret = srs_key_block_parse(&block1.key, _c1s1 + 8 + 764)) != ERROR_SUCCESS) {
srs_error("parse the c1 digest failed. ret=%d", ret);
srs_verbose("generate s2 temp key success.");
char _digest[OpensslHashSize];
if ((ret = openssl_HMACsha256(random, 1504, temp_key, 32, _digest)) != ERROR_SUCCESS) {
srs_error("create s2 digest failed. ret=%d", ret);
return ret;
}
srs_verbose("parse c1 digest-key success");
} else {
ret = ERROR_RTMP_CH_SCHEMA;
srs_error("parse c1 failed. invalid schema=%d, ret=%d", _schema, ret);
srs_verbose("generate s2 digest success.");
is_valid = srs_bytes_equals(digest, _digest, 32);
return ret;
}
schema = _schema;
return ret;
}
int c1s1::c1_create(srs_schema_type _schema)
{
int ret = ERROR_SUCCESS;
if (_schema == srs_schema_invalid) {
ret = ERROR_RTMP_CH_SCHEMA;
srs_error("create c1 failed. invalid schema=%d, ret=%d", _schema, ret);
return ret;
// TODO: FIXME: move to the right position.
c1s1::c1s1()
{
schema = srs_schema_invalid;
}
destroy_blocks();
time = ::time(NULL);
version = 0x02070080; // client c1 version
if (_schema == srs_schema0) {
srs_key_block_init(&block0.key);
srs_digest_block_init(&block1.digest);
} else {
srs_digest_block_init(&block0.digest);
srs_key_block_init(&block1.key);
c1s1::~c1s1()
{
destroy_blocks();
}
schema = _schema;
char* digest = NULL;
if ((ret = calc_c1_digest(digest)) != ERROR_SUCCESS) {
srs_error("sign c1 error, failed to calc digest. ret=%d", ret);
return ret;
char* c1s1::get_digest()
{
srs_assert(schema != srs_schema_invalid);
if (schema == srs_schema0) {
return block1.digest.digest;
} else {
return block0.digest.digest;
}
}
srs_assert(digest != NULL);
SrsAutoFree(char, digest, true);
if (schema == srs_schema0) {
memcpy(block1.digest.digest, digest, 32);
} else {
memcpy(block0.digest.digest, digest, 32);
void c1s1::dump(char* _c1s1)
{
srs_assert(schema != srs_schema_invalid);
if (schema == srs_schema0) {
srs_schema0_copy_to(_c1s1, true, time, version, &block0.key, &block1.digest);
} else {
srs_schema1_copy_to(_c1s1, true, time, version, &block0.digest, &block1.key);
}
}
return ret;
}
int c1s1::c1_validate_digest(bool& is_valid)
{
is_valid = false;
int ret = ERROR_SUCCESS;
char* c1_digest = NULL;
if ((ret = calc_c1_digest(c1_digest)) != ERROR_SUCCESS) {
srs_error("validate c1 error, failed to calc digest. ret=%d", ret);
int c1s1::parse(char* _c1s1, srs_schema_type _schema)
{
int ret = ERROR_SUCCESS;
if (_schema == srs_schema_invalid) {
ret = ERROR_RTMP_CH_SCHEMA;
srs_error("parse c1 failed. invalid schema=%d, ret=%d", _schema, ret);
return ret;
}
destroy_blocks();
time = *(int32_t*)_c1s1;
version = *(int32_t*)(_c1s1 + 4); // client c1 version
if (_schema == srs_schema0) {
if ((ret = srs_key_block_parse(&block0.key, _c1s1 + 8)) != ERROR_SUCCESS) {
srs_error("parse the c1 key failed. ret=%d", ret);
return ret;
}
if ((ret = srs_digest_block_parse(&block1.digest, _c1s1 + 8 + 764)) != ERROR_SUCCESS) {
srs_error("parse the c1 digest failed. ret=%d", ret);
return ret;
}
srs_verbose("parse c1 key-digest success");
} else if (_schema == srs_schema1) {
if ((ret = srs_digest_block_parse(&block0.digest, _c1s1 + 8)) != ERROR_SUCCESS) {
srs_error("parse the c1 key failed. ret=%d", ret);
return ret;
}
if ((ret = srs_key_block_parse(&block1.key, _c1s1 + 8 + 764)) != ERROR_SUCCESS) {
srs_error("parse the c1 digest failed. ret=%d", ret);
return ret;
}
srs_verbose("parse c1 digest-key success");
} else {
ret = ERROR_RTMP_CH_SCHEMA;
srs_error("parse c1 failed. invalid schema=%d, ret=%d", _schema, ret);
return ret;
}
schema = _schema;
return ret;
}
srs_assert(c1_digest != NULL);
SrsAutoFree(char, c1_digest, true);
if (schema == srs_schema0) {
is_valid = srs_bytes_equals(block1.digest.digest, c1_digest, 32);
} else {
is_valid = srs_bytes_equals(block0.digest.digest, c1_digest, 32);
}
return ret;
}
int c1s1::s1_validate_digest(bool& is_valid)
{
is_valid = false;
int ret = ERROR_SUCCESS;
char* s1_digest = NULL;
if ((ret = calc_s1_digest(s1_digest)) != ERROR_SUCCESS) {
srs_error("validate s1 error, failed to calc digest. ret=%d", ret);
int c1s1::c1_create(srs_schema_type _schema)
{
int ret = ERROR_SUCCESS;
if (_schema == srs_schema_invalid) {
ret = ERROR_RTMP_CH_SCHEMA;
srs_error("create c1 failed. invalid schema=%d, ret=%d", _schema, ret);
return ret;
}
destroy_blocks();
time = ::time(NULL);
version = 0x02070080; // client c1 version
if (_schema == srs_schema0) {
srs_key_block_init(&block0.key);
srs_digest_block_init(&block1.digest);
} else {
srs_digest_block_init(&block0.digest);
srs_key_block_init(&block1.key);
}
schema = _schema;
char* digest = NULL;
if ((ret = calc_c1_digest(digest)) != ERROR_SUCCESS) {
srs_error("sign c1 error, failed to calc digest. ret=%d", ret);
return ret;
}
srs_assert(digest != NULL);
SrsAutoFree(char, digest, true);
if (schema == srs_schema0) {
memcpy(block1.digest.digest, digest, 32);
} else {
memcpy(block0.digest.digest, digest, 32);
}
return ret;
}
srs_assert(s1_digest != NULL);
SrsAutoFree(char, s1_digest, true);
if (schema == srs_schema0) {
is_valid = srs_bytes_equals(block1.digest.digest, s1_digest, 32);
} else {
is_valid = srs_bytes_equals(block0.digest.digest, s1_digest, 32);
}
return ret;
}
int c1s1::s1_create(c1s1* c1)
{
int ret = ERROR_SUCCESS;
if (c1->schema == srs_schema_invalid) {
ret = ERROR_RTMP_CH_SCHEMA;
srs_error("create s1 failed. invalid schema=%d, ret=%d", c1->schema, ret);
int c1s1::c1_validate_digest(bool& is_valid)
{
is_valid = false;
int ret = ERROR_SUCCESS;
char* c1_digest = NULL;
if ((ret = calc_c1_digest(c1_digest)) != ERROR_SUCCESS) {
srs_error("validate c1 error, failed to calc digest. ret=%d", ret);
return ret;
}
srs_assert(c1_digest != NULL);
SrsAutoFree(char, c1_digest, true);
if (schema == srs_schema0) {
is_valid = srs_bytes_equals(block1.digest.digest, c1_digest, 32);
} else {
is_valid = srs_bytes_equals(block0.digest.digest, c1_digest, 32);
}
return ret;
}
destroy_blocks();
schema = c1->schema;
time = ::time(NULL);
version = 0x01000504; // server s1 version
if (schema == srs_schema0) {
srs_key_block_init(&block0.key);
srs_digest_block_init(&block1.digest);
} else {
srs_digest_block_init(&block0.digest);
srs_key_block_init(&block1.key);
int c1s1::s1_validate_digest(bool& is_valid)
{
is_valid = false;
int ret = ERROR_SUCCESS;
char* s1_digest = NULL;
if ((ret = calc_s1_digest(s1_digest)) != ERROR_SUCCESS) {
srs_error("validate s1 error, failed to calc digest. ret=%d", ret);
return ret;
}
srs_assert(s1_digest != NULL);
SrsAutoFree(char, s1_digest, true);
if (schema == srs_schema0) {
is_valid = srs_bytes_equals(block1.digest.digest, s1_digest, 32);
} else {
is_valid = srs_bytes_equals(block0.digest.digest, s1_digest, 32);
}
return ret;
}
if (schema == srs_schema0) {
if ((ret = openssl_generate_key(c1->block0.key.key, block0.key.key, 128)) != ERROR_SUCCESS) {
srs_error("calc s1 key failed. ret=%d", ret);
int c1s1::s1_create(c1s1* c1)
{
int ret = ERROR_SUCCESS;
if (c1->schema == srs_schema_invalid) {
ret = ERROR_RTMP_CH_SCHEMA;
srs_error("create s1 failed. invalid schema=%d, ret=%d", c1->schema, ret);
return ret;
}
} else {
if ((ret = openssl_generate_key(c1->block1.key.key, block1.key.key, 128)) != ERROR_SUCCESS) {
srs_error("calc s1 key failed. ret=%d", ret);
destroy_blocks();
schema = c1->schema;
time = ::time(NULL);
version = 0x01000504; // server s1 version
if (schema == srs_schema0) {
srs_key_block_init(&block0.key);
srs_digest_block_init(&block1.digest);
} else {
srs_digest_block_init(&block0.digest);
srs_key_block_init(&block1.key);
}
if (schema == srs_schema0) {
if ((ret = openssl_generate_key(c1->block0.key.key, block0.key.key, 128)) != ERROR_SUCCESS) {
srs_error("calc s1 key failed. ret=%d", ret);
return ret;
}
} else {
if ((ret = openssl_generate_key(c1->block1.key.key, block1.key.key, 128)) != ERROR_SUCCESS) {
srs_error("calc s1 key failed. ret=%d", ret);
return ret;
}
}
srs_verbose("calc s1 key success.");
char* s1_digest = NULL;
if ((ret = calc_s1_digest(s1_digest)) != ERROR_SUCCESS) {
srs_error("calc s1 digest failed. ret=%d", ret);
return ret;
}
}
srs_verbose("calc s1 key success.");
srs_verbose("calc s1 digest success.");
srs_assert(s1_digest != NULL);
SrsAutoFree(char, s1_digest, true);
if (schema == srs_schema0) {
memcpy(block1.digest.digest, s1_digest, 32);
} else {
memcpy(block0.digest.digest, s1_digest, 32);
}
srs_verbose("copy s1 key success.");
char* s1_digest = NULL;
if ((ret = calc_s1_digest(s1_digest)) != ERROR_SUCCESS) {
srs_error("calc s1 digest failed. ret=%d", ret);
return ret;
}
srs_verbose("calc s1 digest success.");
srs_assert(s1_digest != NULL);
SrsAutoFree(char, s1_digest, true);
if (schema == srs_schema0) {
memcpy(block1.digest.digest, s1_digest, 32);
} else {
memcpy(block0.digest.digest, s1_digest, 32);
}
srs_verbose("copy s1 key success.");
return ret;
}
int c1s1::calc_s1_digest(char*& digest)
{
int ret = ERROR_SUCCESS;
srs_assert(schema == srs_schema0 || schema == srs_schema1);
char* c1s1_joined_bytes = NULL;
if (schema == srs_schema0) {
c1s1_joined_bytes = srs_bytes_join_schema0(time, version, &block0.key, &block1.digest);
} else {
c1s1_joined_bytes = srs_bytes_join_schema1(time, version, &block0.digest, &block1.key);
}
srs_assert(c1s1_joined_bytes != NULL);
SrsAutoFree(char, c1s1_joined_bytes, true);
int c1s1::calc_s1_digest(char*& digest)
{
int ret = ERROR_SUCCESS;
srs_assert(schema == srs_schema0 || schema == srs_schema1);
char* c1s1_joined_bytes = NULL;
digest = new char[OpensslHashSize];
if ((ret = openssl_HMACsha256(c1s1_joined_bytes, 1536 - 32, SrsGenuineFMSKey, 36, digest)) != ERROR_SUCCESS) {
srs_error("calc digest for s1 failed. ret=%d", ret);
if (schema == srs_schema0) {
c1s1_joined_bytes = srs_bytes_join_schema0(time, version, &block0.key, &block1.digest);
} else {
c1s1_joined_bytes = srs_bytes_join_schema1(time, version, &block0.digest, &block1.key);
}
srs_assert(c1s1_joined_bytes != NULL);
SrsAutoFree(char, c1s1_joined_bytes, true);
digest = new char[OpensslHashSize];
if ((ret = openssl_HMACsha256(c1s1_joined_bytes, 1536 - 32, SrsGenuineFMSKey, 36, digest)) != ERROR_SUCCESS) {
srs_error("calc digest for s1 failed. ret=%d", ret);
return ret;
}
srs_verbose("digest calculated for s1");
return ret;
}
srs_verbose("digest calculated for s1");
return ret;
}
int c1s1::calc_c1_digest(char*& digest)
{
int ret = ERROR_SUCCESS;
srs_assert(schema == srs_schema0 || schema == srs_schema1);
char* c1s1_joined_bytes = NULL;
if (schema == srs_schema0) {
c1s1_joined_bytes = srs_bytes_join_schema0(time, version, &block0.key, &block1.digest);
} else {
c1s1_joined_bytes = srs_bytes_join_schema1(time, version, &block0.digest, &block1.key);
}
srs_assert(c1s1_joined_bytes != NULL);
SrsAutoFree(char, c1s1_joined_bytes, true);
int c1s1::calc_c1_digest(char*& digest)
{
int ret = ERROR_SUCCESS;
srs_assert(schema == srs_schema0 || schema == srs_schema1);
char* c1s1_joined_bytes = NULL;
digest = new char[OpensslHashSize];
if ((ret = openssl_HMACsha256(c1s1_joined_bytes, 1536 - 32, SrsGenuineFPKey, 30, digest)) != ERROR_SUCCESS) {
srs_error("calc digest for c1 failed. ret=%d", ret);
if (schema == srs_schema0) {
c1s1_joined_bytes = srs_bytes_join_schema0(time, version, &block0.key, &block1.digest);
} else {
c1s1_joined_bytes = srs_bytes_join_schema1(time, version, &block0.digest, &block1.key);
}
srs_assert(c1s1_joined_bytes != NULL);
SrsAutoFree(char, c1s1_joined_bytes, true);
digest = new char[OpensslHashSize];
if ((ret = openssl_HMACsha256(c1s1_joined_bytes, 1536 - 32, SrsGenuineFPKey, 30, digest)) != ERROR_SUCCESS) {
srs_error("calc digest for c1 failed. ret=%d", ret);
return ret;
}
srs_verbose("digest calculated for c1");
return ret;
}
srs_verbose("digest calculated for c1");
return ret;
}
void c1s1::destroy_blocks()
{
if (schema == srs_schema_invalid) {
return;
}
if (schema == srs_schema0) {
srs_key_block_free(&block0.key);
srs_digest_block_free(&block1.digest);
} else {
srs_digest_block_free(&block0.digest);
srs_key_block_free(&block1.key);
void c1s1::destroy_blocks()
{
if (schema == srs_schema_invalid) {
return;
}
if (schema == srs_schema0) {
srs_key_block_free(&block0.key);
srs_digest_block_free(&block1.digest);
} else {
srs_digest_block_free(&block0.digest);
srs_key_block_free(&block1.key);
}
}
}
... ... @@ -1144,13 +1164,10 @@ int SrsComplexHandshake::handshake_with_client(SrsHandshakeBytes* hs_bytes, ISrs
c2s2 c2;
c2.parse(hs_bytes->c2);
srs_verbose("complex handshake read c2 success.");
// verify c2
if ((ret = c2.c2_validate(&s1, is_valid)) != ERROR_SUCCESS || !is_valid) {
ret = ERROR_RTMP_HANDSHAKE;
srs_trace("verify c2 failed. ret=%d", ret);
return ret;
}
srs_verbose("verify c2 success.");
// never verify c2, for ffmpeg will failed.
// it's ok for flash.
srs_trace("comple handshake with client success");
... ...
... ... @@ -97,6 +97,78 @@ namespace srs
int random1_size;
};
// the digest key generate size.
#define OpensslHashSize 512
extern u_int8_t SrsGenuineFMSKey[];
extern u_int8_t SrsGenuineFPKey[];
int openssl_HMACsha256(const void* data, int data_size, const void* key, int key_size, void* digest);
int openssl_generate_key(char* _private_key, char* _public_key, int32_t size);
// calc the offset of key,
// the key->offset cannot be used as the offset of key.
int srs_key_block_get_offset(key_block* key);
// create new key block data.
// if created, user must free it by srs_key_block_free
void srs_key_block_init(key_block* key);
// parse key block from c1s1.
// if created, user must free it by srs_key_block_free
// @c1s1_key_bytes the key start bytes, maybe c1s1 or c1s1+764
int srs_key_block_parse(key_block* key, char* c1s1_key_bytes);
// free the block data create by
// srs_key_block_init or srs_key_block_parse
void srs_key_block_free(key_block* key);
// calc the offset of digest,
// the key->offset cannot be used as the offset of digest.
int srs_digest_block_get_offset(digest_block* digest);
// create new digest block data.
// if created, user must free it by srs_digest_block_free
void srs_digest_block_init(digest_block* digest);
// parse digest block from c1s1.
// if created, user must free it by srs_digest_block_free
// @c1s1_digest_bytes the digest start bytes, maybe c1s1 or c1s1+764
int srs_digest_block_parse(digest_block* digest, char* c1s1_digest_bytes);
// free the block data create by
// srs_digest_block_init or srs_digest_block_parse
void srs_digest_block_free(digest_block* digest);
/**
* copy whole c1s1 to bytes.
*/
void srs_schema0_copy_to(char* bytes, bool with_digest,
int32_t time, int32_t version, key_block* key, digest_block* digest);
void srs_schema1_copy_to(char* bytes, bool with_digest,
int32_t time, int32_t version, digest_block* digest, key_block* key);
/**
* c1s1 is splited by digest:
* c1s1-part1: n bytes (time, version, key and digest-part1).
* digest-data: 32bytes
* c1s1-part2: (1536-n-32)bytes (digest-part2)
* @return a new allocated bytes, user must free it.
*/
char* srs_bytes_join_schema0(int32_t time, int32_t version, key_block* key, digest_block* digest);
/**
* c1s1 is splited by digest:
* c1s1-part1: n bytes (time, version and digest-part1).
* digest-data: 32bytes
* c1s1-part2: (1536-n-32)bytes (digest-part2 and key)
* @return a new allocated bytes, user must free it.
*/
char* srs_bytes_join_schema1(int32_t time, int32_t version, digest_block* digest, key_block* key);
/**
* compare the memory in bytes.
*/
bool srs_bytes_equals(void* pa, void* pb, int size);
/**
* c1s1 schema0
* time: 4bytes
... ... @@ -236,41 +308,14 @@ namespace srs
*/
virtual int s2_validate(c1s1* c1, bool& is_valid);
};
/**
* compare the memory in bytes.
*/
bool srs_bytes_equals(void* pa, void* pb, int size);
/**
* c1s1 is splited by digest:
* c1s1-part1: n bytes (time, version, key and digest-part1).
* digest-data: 32bytes
* c1s1-part2: (1536-n-32)bytes (digest-part2)
* @return a new allocated bytes, user must free it.
*/
char* srs_bytes_join_schema0(int32_t time, int32_t version, key_block* key, digest_block* digest);
/**
* c1s1 is splited by digest:
* c1s1-part1: n bytes (time, version and digest-part1).
* digest-data: 32bytes
* c1s1-part2: (1536-n-32)bytes (digest-part2 and key)
* @return a new allocated bytes, user must free it.
*/
char* srs_bytes_join_schema1(int32_t time, int32_t version, digest_block* digest, key_block* key);
// the digest key generate size.
#define OpensslHashSize 512
extern u_int8_t SrsGenuineFMSKey[];
extern u_int8_t SrsGenuineFPKey[];
int openssl_HMACsha256(const void* data, int data_size, const void* key, int key_size, void* digest);
}
#endif
/**
* try complex handshake, if failed, fallback to simple handshake.
* simple handshake.
* user can try complex handshake first,
* rollback to simple handshake if error ERROR_RTMP_TRY_SIMPLE_HS
*/
class SrsSimpleHandshake
{
... ...
... ... @@ -36,6 +36,77 @@ ISrsThreadContext* _srs_context = new ISrsThreadContext();
SrsConfig* _srs_config = NULL;
SrsServer* _srs_server = NULL;
MockEmptyIO::MockEmptyIO()
{
}
MockEmptyIO::~MockEmptyIO()
{
}
bool MockEmptyIO::is_never_timeout(int64_t /*timeout_us*/)
{
return true;
}
int MockEmptyIO::read_fully(const void* /*buf*/, size_t /*size*/, ssize_t* /*nread*/)
{
return ERROR_SUCCESS;
}
int MockEmptyIO::write(const void* /*buf*/, size_t /*size*/, ssize_t* /*nwrite*/)
{
return ERROR_SUCCESS;
}
void MockEmptyIO::set_recv_timeout(int64_t /*timeout_us*/)
{
}
int64_t MockEmptyIO::get_recv_timeout()
{
return -1;
}
int64_t MockEmptyIO::get_recv_bytes()
{
return -1;
}
int MockEmptyIO::get_recv_kbps()
{
return 0;
}
void MockEmptyIO::set_send_timeout(int64_t /*timeout_us*/)
{
}
int64_t MockEmptyIO::get_send_timeout()
{
return 0;
}
int64_t MockEmptyIO::get_send_bytes()
{
return 0;
}
int MockEmptyIO::get_send_kbps()
{
return 0;
}
int MockEmptyIO::writev(const iovec */*iov*/, int /*iov_size*/, ssize_t* /*nwrite*/)
{
return ERROR_SUCCESS;
}
int MockEmptyIO::read(const void* /*buf*/, size_t /*size*/, ssize_t* /*nread*/)
{
return ERROR_SUCCESS;
}
// basic test and samples.
VOID TEST(SampleTest, FastSampleInt64Test)
{
... ...
... ... @@ -34,4 +34,36 @@ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
// we add an empty macro for upp to show the smart tips.
#define VOID
#include <srs_protocol_io.hpp>
class MockEmptyIO : public ISrsProtocolReaderWriter
{
public:
MockEmptyIO();
virtual ~MockEmptyIO();
// for protocol
public:
virtual bool is_never_timeout(int64_t timeout_us);
// for handshake.
public:
virtual int read_fully(const void* buf, size_t size, ssize_t* nread);
virtual int write(const void* buf, size_t size, ssize_t* nwrite);
// for protocol
public:
virtual void set_recv_timeout(int64_t timeout_us);
virtual int64_t get_recv_timeout();
virtual int64_t get_recv_bytes();
virtual int get_recv_kbps();
// for protocol
public:
virtual void set_send_timeout(int64_t timeout_us);
virtual int64_t get_send_timeout();
virtual int64_t get_send_bytes();
virtual int get_send_kbps();
virtual int writev(const iovec *iov, int iov_size, ssize_t* nwrite);
// for protocol/amf0/msg-codec
public:
virtual int read(const void* buf, size_t size, ssize_t* nread);
};
#endif
... ...
... ... @@ -24,77 +24,7 @@ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include <srs_kernel_error.hpp>
#include <srs_core_autofree.hpp>
MockEmptyIO::MockEmptyIO()
{
}
MockEmptyIO::~MockEmptyIO()
{
}
bool MockEmptyIO::is_never_timeout(int64_t /*timeout_us*/)
{
return true;
}
int MockEmptyIO::read_fully(const void* /*buf*/, size_t /*size*/, ssize_t* /*nread*/)
{
return ERROR_SUCCESS;
}
int MockEmptyIO::write(const void* /*buf*/, size_t /*size*/, ssize_t* /*nwrite*/)
{
return ERROR_SUCCESS;
}
void MockEmptyIO::set_recv_timeout(int64_t /*timeout_us*/)
{
}
int64_t MockEmptyIO::get_recv_timeout()
{
return -1;
}
int64_t MockEmptyIO::get_recv_bytes()
{
return -1;
}
int MockEmptyIO::get_recv_kbps()
{
return 0;
}
void MockEmptyIO::set_send_timeout(int64_t /*timeout_us*/)
{
}
int64_t MockEmptyIO::get_send_timeout()
{
return 0;
}
int64_t MockEmptyIO::get_send_bytes()
{
return 0;
}
int MockEmptyIO::get_send_kbps()
{
return 0;
}
int MockEmptyIO::writev(const iovec */*iov*/, int /*iov_size*/, ssize_t* /*nwrite*/)
{
return ERROR_SUCCESS;
}
int MockEmptyIO::read(const void* /*buf*/, size_t /*size*/, ssize_t* /*nread*/)
{
return ERROR_SUCCESS;
}
#include <srs_protocol_utility.hpp>
// verify the sha256
VOID TEST(HandshakeTest, OpensslSha256)
... ... @@ -124,6 +54,37 @@ VOID TEST(HandshakeTest, OpensslSha256)
EXPECT_TRUE(srs_bytes_equals(digest, expect_digest, 32));
}
// verify the dh key
VOID TEST(HandshakeTest, DHKey)
{
char pri_key[] = {
0x6e, 0x65, 0x69, 0x2d, 0x69, 0x2d, 0x69, 0x73,
0x6e, 0x69, 0x73, 0x6c, 0x65, 0x72, 0x69, 0x72,
0x76, 0x65, 0x72, 0x69, 0x77, 0x74, 0x2e, 0x6e,
0x72, 0x76, 0x72, 0x65, 0x72, 0x70, 0x72, 0x69,
0x69, 0x70, 0x72, 0x73, 0x6e, 0x65, 0x72, 0x72,
0x6e, 0x2d, 0x65, 0x74, 0x72, 0x6c, 0x69, 0x74,
0x69, 0x65, 0x40, 0x69, 0x69, 0x76, 0x77, 0x2d,
0x73, 0x65, 0x72, 0x72, 0x76, 0x73, 0x72, 0x2e,
0x2d, 0x76, 0x65, 0x31, 0x65, 0x6d, 0x6d, 0x73,
0x69, 0x73, 0x74, 0x2e, 0x74, 0x72, 0x65, 0x65,
0x72, 0x65, 0x2d, 0x74, 0x69, 0x31, 0x65, 0x2d,
0x6f, 0x77, 0x2e, 0x76, 0x77, 0x2d, 0x77, 0x72,
0x65, 0x65, 0x31, 0x74, 0x73, 0x70, 0x74, 0x6e,
0x72, 0x6e, 0x73, 0x6d, 0x2e, 0x69, 0x72, 0x2d,
0x65, 0x69, 0x77, 0x69, 0x76, 0x72, 0x77, 0x72,
0x32, 0x6e, 0x65, 0x6c, 0x2e, 0x2d, 0x6e, 0x69
};
char pub_key1[128];
openssl_generate_key(pri_key, pub_key1, 128);
char pub_key2[128];
openssl_generate_key(pri_key, pub_key2, 128);
EXPECT_FALSE(srs_bytes_equals(pub_key1, pub_key2, 128));
}
// flash will sendout a c0c1 encrypt by ssl.
VOID TEST(HandshakeTest, VerifyFPC0C1)
{
... ... @@ -172,7 +133,7 @@ VOID TEST(HandshakeTest, VerifyFPC0C1)
0xb1, 0xb5, 0xbc, 0xa6, 0xd6, 0xd6, 0x1d, 0xce, 0x93, 0x78, 0xb3, 0xec, 0xa8, 0x64, 0x19, 0x13
};
EXPECT_TRUE(srs_bytes_equals(c1.block1.digest.digest, digest, 32));
}
}
VOID TEST(HandshakeTest, SimpleHandshake)
{
... ... @@ -260,3 +221,19 @@ VOID TEST(HandshakeTest, ComplexHandshake)
ASSERT_TRUE(is_valid);
}
}
VOID TEST(HandshakeTest, BytesEqual)
{
char a1[] = { 0x01 };
char b1[] = { 0x02 };
char a2[] = { 0x01, 0x02 };
char b2[] = { 0x02, 0x03 };
EXPECT_TRUE(srs_bytes_equals(NULL, NULL, 0));
EXPECT_FALSE(srs_bytes_equals(a1, NULL, 1));
EXPECT_FALSE(srs_bytes_equals(NULL, a1, 1));
EXPECT_FALSE(srs_bytes_equals(a1, b1, 1));
EXPECT_TRUE(srs_bytes_equals(a1, a1, 1));
EXPECT_TRUE(srs_bytes_equals(a1, a2, 1));
EXPECT_FALSE(srs_bytes_equals(a1, b2, 1));
}
... ...
... ... @@ -29,39 +29,8 @@ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <srs_utest.hpp>
#include <srs_protocol_io.hpp>
#include <srs_protocol_rtmp.hpp>
#include <srs_protocol_handshake.hpp>
using namespace srs;
class MockEmptyIO : public ISrsProtocolReaderWriter
{
public:
MockEmptyIO();
virtual ~MockEmptyIO();
// for protocol
public:
virtual bool is_never_timeout(int64_t timeout_us);
// for handshake.
public:
virtual int read_fully(const void* buf, size_t size, ssize_t* nread);
virtual int write(const void* buf, size_t size, ssize_t* nwrite);
// for protocol
public:
virtual void set_recv_timeout(int64_t timeout_us);
virtual int64_t get_recv_timeout();
virtual int64_t get_recv_bytes();
virtual int get_recv_kbps();
// for protocol
public:
virtual void set_send_timeout(int64_t timeout_us);
virtual int64_t get_send_timeout();
virtual int64_t get_send_bytes();
virtual int get_send_kbps();
virtual int writev(const iovec *iov, int iov_size, ssize_t* nwrite);
// for protocol/amf0/msg-codec
public:
virtual int read(const void* buf, size_t size, ssize_t* nread);
};
#endif
... ...