winlin

move some utilities from kernel to app. 0.9.99

... ... @@ -128,7 +128,7 @@ int SrsForwarder::on_publish(SrsRequest* req, std::string forward_server)
source_ep.c_str(), dest_ep.c_str(), ret);
return ret;
}
srs_trace("start forward %s to %s, stream: %s/%s",
srs_trace("start forward %s to %s, tcUrl=%s, stream=%s",
source_ep.c_str(), dest_ep.c_str(), tc_url.c_str(),
stream_name.c_str());
... ...
... ... @@ -36,6 +36,7 @@ using namespace std;
#include <srs_app_json.hpp>
#include <srs_app_config.hpp>
#include <srs_kernel_utility.hpp>
#include <srs_app_utility.hpp>
SrsApiRoot::SrsApiRoot()
{
... ...
... ... @@ -45,6 +45,7 @@ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include <srs_app_ingest.hpp>
#endif
#include <srs_app_source.hpp>
#include <srs_app_utility.hpp>
#define SERVER_LISTEN_BACKLOG 512
... ...
... ... @@ -23,8 +23,11 @@ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include <srs_app_utility.hpp>
#include <unistd.h>
#include <srs_kernel_log.hpp>
#include <srs_app_config.hpp>
#include <srs_kernel_utility.hpp>
int srs_get_log_level(std::string level)
{
... ... @@ -42,3 +45,393 @@ int srs_get_log_level(std::string level)
return SrsLogLevel::Trace;
}
}
static SrsRusage _srs_system_rusage;
SrsRusage::SrsRusage()
{
ok = false;
sample_time = 0;
memset(&r, 0, sizeof(rusage));
}
SrsRusage* srs_get_system_rusage()
{
return &_srs_system_rusage;
}
void srs_update_system_rusage()
{
if (getrusage(RUSAGE_SELF, &_srs_system_rusage.r) < 0) {
srs_warn("getrusage failed, ignore");
return;
}
srs_update_system_time_ms();
_srs_system_rusage.sample_time = srs_get_system_time_ms();
_srs_system_rusage.ok = true;
}
static SrsProcSelfStat _srs_system_cpu_self_stat;
static SrsProcSystemStat _srs_system_cpu_system_stat;
SrsProcSelfStat::SrsProcSelfStat()
{
ok = false;
sample_time = 0;
percent = 0;
pid = 0;
memset(comm, 0, sizeof(comm));
state = 0;
ppid = 0;
pgrp = 0;
session = 0;
tty_nr = 0;
tpgid = 0;
flags = 0;
minflt = 0;
cminflt = 0;
majflt = 0;
cmajflt = 0;
utime = 0;
stime = 0;
cutime = 0;
cstime = 0;
priority = 0;
nice = 0;
num_threads = 0;
itrealvalue = 0;
starttime = 0;
vsize = 0;
rss = 0;
rsslim = 0;
startcode = 0;
endcode = 0;
startstack = 0;
kstkesp = 0;
kstkeip = 0;
signal = 0;
blocked = 0;
sigignore = 0;
sigcatch = 0;
wchan = 0;
nswap = 0;
cnswap = 0;
exit_signal = 0;
processor = 0;
rt_priority = 0;
policy = 0;
delayacct_blkio_ticks = 0;
guest_time = 0;
cguest_time = 0;
}
SrsProcSystemStat::SrsProcSystemStat()
{
ok = false;
sample_time = 0;
percent = 0;
memset(label, 0, sizeof(label));
user = 0;
nice = 0;
sys = 0;
idle = 0;
iowait = 0;
irq = 0;
softirq = 0;
steal = 0;
guest = 0;
}
SrsProcSelfStat* srs_get_self_proc_stat()
{
return &_srs_system_cpu_self_stat;
}
SrsProcSystemStat* srs_get_system_proc_stat()
{
return &_srs_system_cpu_system_stat;
}
bool get_proc_system_stat(SrsProcSystemStat& r)
{
FILE* f = fopen("/proc/stat", "r");
if (f == NULL) {
srs_warn("open system cpu stat failed, ignore");
return false;
}
for (;;) {
int ret = fscanf(f, "%4s %lu %lu %lu %lu %lu "
"%lu %lu %lu %lu\n",
r.label, &r.user, &r.nice, &r.sys, &r.idle, &r.iowait,
&r.irq, &r.softirq, &r.steal, &r.guest);
r.ok = false;
if (ret == EOF) {
break;
}
if (strcmp("cpu", r.label) == 0) {
r.ok = true;
break;
}
}
fclose(f);
return r.ok;
}
bool get_proc_self_stat(SrsProcSelfStat& r)
{
FILE* f = fopen("/proc/self/stat", "r");
if (f == NULL) {
srs_warn("open self cpu stat failed, ignore");
return false;
}
int ret = fscanf(f, "%d %32s %c %d %d %d %d "
"%d %u %lu %lu %lu %lu "
"%lu %lu %ld %ld %ld %ld "
"%ld %ld %llu %lu %ld "
"%lu %lu %lu %lu %lu "
"%lu %lu %lu %lu %lu "
"%lu %lu %lu %d %d "
"%u %u %llu "
"%lu %ld",
&r.pid, r.comm, &r.state, &r.ppid, &r.pgrp, &r.session, &r.tty_nr,
&r.tpgid, &r.flags, &r.minflt, &r.cminflt, &r.majflt, &r.cmajflt,
&r.utime, &r.stime, &r.cutime, &r.cstime, &r.priority, &r.nice,
&r.num_threads, &r.itrealvalue, &r.starttime, &r.vsize, &r.rss,
&r.rsslim, &r.startcode, &r.endcode, &r.startstack, &r.kstkesp,
&r.kstkeip, &r.signal, &r.blocked, &r.sigignore, &r.sigcatch,
&r.wchan, &r.nswap, &r.cnswap, &r.exit_signal, &r.processor,
&r.rt_priority, &r.policy, &r.delayacct_blkio_ticks,
&r.guest_time, &r.cguest_time);
fclose(f);
if (ret >= 0) {
r.ok = true;
}
return r.ok;
}
void srs_update_proc_stat()
{
srs_update_system_time_ms();
// system cpu stat
if (true) {
SrsProcSystemStat r;
if (!get_proc_system_stat(r)) {
return;
}
r.sample_time = srs_get_system_time_ms();
// calc usage in percent
SrsProcSystemStat& o = _srs_system_cpu_system_stat;
// @see: http://blog.csdn.net/nineday/article/details/1928847
int64_t total = (r.user + r.nice + r.sys + r.idle + r.iowait + r.irq + r.softirq + r.steal + r.guest)
- (o.user + o.nice + o.sys + o.idle + o.iowait + o.irq + o.softirq + o.steal + o.guest);
int64_t idle = r.idle - o.idle;
if (total > 0) {
r.percent = (float)(1 - idle / (double)total);
}
// upate cache.
_srs_system_cpu_system_stat = r;
}
// self cpu stat
if (true) {
SrsProcSelfStat r;
if (!get_proc_self_stat(r)) {
return;
}
srs_update_system_time_ms();
r.sample_time = srs_get_system_time_ms();
// calc usage in percent
SrsProcSelfStat& o = _srs_system_cpu_self_stat;
// @see: http://stackoverflow.com/questions/16011677/calculating-cpu-usage-using-proc-files
int64_t total = r.sample_time - o.sample_time;
int64_t usage = (r.utime + r.stime) - (o.utime + o.stime);
if (total > 0) {
r.percent = (float)(usage * 1000 / (double)total / 100);
}
// upate cache.
_srs_system_cpu_self_stat = r;
}
}
SrsMemInfo::SrsMemInfo()
{
ok = false;
sample_time = 0;
percent_ram = 0;
percent_swap = 0;
MemActive = 0;
RealInUse = 0;
NotInUse = 0;
MemTotal = 0;
MemFree = 0;
Buffers = 0;
Cached = 0;
SwapTotal = 0;
SwapFree = 0;
}
static SrsMemInfo _srs_system_meminfo;
SrsMemInfo* srs_get_meminfo()
{
return &_srs_system_meminfo;
}
void srs_update_meminfo()
{
FILE* f = fopen("/proc/meminfo", "r");
if (f == NULL) {
srs_warn("open meminfo failed, ignore");
return;
}
SrsMemInfo& r = _srs_system_meminfo;
r.ok = false;
for (;;) {
static char label[64];
static unsigned long value;
static char postfix[64];
int ret = fscanf(f, "%64s %lu %64s\n", label, &value, postfix);
if (ret == EOF) {
break;
}
if (strcmp("MemTotal:", label) == 0) {
r.MemTotal = value;
} else if (strcmp("MemFree:", label) == 0) {
r.MemFree = value;
} else if (strcmp("Buffers:", label) == 0) {
r.Buffers = value;
} else if (strcmp("Cached:", label) == 0) {
r.Cached = value;
} else if (strcmp("SwapTotal:", label) == 0) {
r.SwapTotal = value;
} else if (strcmp("SwapFree:", label) == 0) {
r.SwapFree = value;
}
}
fclose(f);
r.sample_time = srs_get_system_time_ms();
r.MemActive = r.MemTotal - r.MemFree;
r.RealInUse = r.MemActive - r.Buffers - r.Cached;
r.NotInUse = r.MemTotal - r.RealInUse;
r.ok = true;
if (r.MemTotal > 0) {
r.percent_ram = (float)(r.RealInUse / (double)r.MemTotal);
}
if (r.SwapTotal > 0) {
r.percent_swap = (float)((r.SwapTotal - r.SwapFree) / (double)r.SwapTotal);
}
}
SrsCpuInfo::SrsCpuInfo()
{
ok = false;
nb_processors = 0;
nb_processors_online = 0;
}
SrsCpuInfo* srs_get_cpuinfo()
{
static SrsCpuInfo* cpu = NULL;
if (cpu != NULL) {
return cpu;
}
// initialize cpu info.
cpu = new SrsCpuInfo();
cpu->ok = true;
cpu->nb_processors = sysconf(_SC_NPROCESSORS_CONF);
cpu->nb_processors_online = sysconf(_SC_NPROCESSORS_ONLN);
return cpu;
}
SrsPlatformInfo::SrsPlatformInfo()
{
ok = false;
srs_startup_time = srs_get_system_time_ms();
os_uptime = 0;
os_ilde_time = 0;
load_one_minutes = 0;
load_five_minutes = 0;
load_fifteen_minutes = 0;
}
static SrsPlatformInfo _srs_system_platform_info;
SrsPlatformInfo* srs_get_platform_info()
{
return &_srs_system_platform_info;
}
void srs_update_platform_info()
{
SrsPlatformInfo& r = _srs_system_platform_info;
r.ok = true;
if (true) {
FILE* f = fopen("/proc/uptime", "r");
if (f == NULL) {
srs_warn("open uptime failed, ignore");
return;
}
int ret = fscanf(f, "%lf %lf\n", &r.os_uptime, &r.os_ilde_time);
fclose(f);
if (ret < 0) {
r.ok = false;
}
}
if (true) {
FILE* f = fopen("/proc/loadavg", "r");
if (f == NULL) {
srs_warn("open loadavg failed, ignore");
return;
}
int ret = fscanf(f, "%lf %lf %lf\n",
&r.load_one_minutes, &r.load_five_minutes, &r.load_fifteen_minutes);
fclose(f);
if (ret < 0) {
r.ok = false;
}
}
}
... ...
... ... @@ -30,10 +30,314 @@ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include <srs_core.hpp>
#include <sys/resource.h>
/**
* convert level in string to log level in int.
* @return the log level defined in SrsLogLevel.
*/
extern int srs_get_log_level(std::string level);
// @see: man getrusage
struct SrsRusage
{
// whether the data is ok.
bool ok;
// the time in ms when sample.
int64_t sample_time;
rusage r;
SrsRusage();
};
// get system rusage, use cache to avoid performance problem.
extern SrsRusage* srs_get_system_rusage();
// the deamon st-thread will update it.
extern void srs_update_system_rusage();
// @see: man 5 proc, /proc/[pid]/stat
struct SrsProcSelfStat
{
// whether the data is ok.
bool ok;
// the time in ms when sample.
int64_t sample_time;
// the percent of usage. 0.153 is 15.3%.
float percent;
// pid %d The process ID.
int pid;
// comm %s The filename of the executable, in parentheses. This is visible whether or not the executable is
// swapped out.
char comm[32];
// state %c One character from the string "RSDZTW" where R is running, S is sleeping in an interruptible wait, D
// is waiting in uninterruptible disk sleep, Z is zombie, T is traced or stopped (on a signal), and W is
// paging.
char state;
// ppid %d The PID of the parent.
int ppid;
// pgrp %d The process group ID of the process.
int pgrp;
// session %d The session ID of the process.
int session;
// tty_nr %d The controlling terminal of the process. (The minor device number is contained in the combination of
// bits 31 to 20 and 7 to 0; the major device number is in bits 15 t0 8.)
int tty_nr;
// tpgid %d The ID of the foreground process group of the controlling terminal of the process.
int tpgid;
// flags %u (%lu before Linux 2.6.22)
// The kernel flags word of the process. For bit meanings, see the PF_* defines in <linux/sched.h>.
// Details depend on the kernel version.
unsigned int flags;
// minflt %lu The number of minor faults the process has made which have not required loading a memory page from
// disk.
unsigned long minflt;
// cminflt %lu The number of minor faults that the process’s waited-for children have made.
unsigned long cminflt;
// majflt %lu The number of major faults the process has made which have required loading a memory page from disk.
unsigned long majflt;
// cmajflt %lu The number of major faults that the process’s waited-for children have made.
unsigned long cmajflt;
// utime %lu Amount of time that this process has been scheduled in user mode, measured in clock ticks (divide by
// sysconf(_SC_CLK_TCK). This includes guest time, guest_time (time spent running a virtual CPU, see
// below), so that applications that are not aware of the guest time field do not lose that time from
// their calculations.
unsigned long utime;
// stime %lu Amount of time that this process has been scheduled in kernel mode, measured in clock ticks (divide by
// sysconf(_SC_CLK_TCK).
unsigned long stime;
// cutime %ld Amount of time that this process’s waited-for children have been scheduled in user mode, measured in
// clock ticks (divide by sysconf(_SC_CLK_TCK). (See also times(2).) This includes guest time,
// cguest_time (time spent running a virtual CPU, see below).
long cutime;
// cstime %ld Amount of time that this process’s waited-for children have been scheduled in kernel mode, measured in
// clock ticks (divide by sysconf(_SC_CLK_TCK).
long cstime;
// priority %ld
// (Explanation for Linux 2.6) For processes running a real-time scheduling policy (policy below; see
// sched_setscheduler(2)), this is the negated scheduling priority, minus one; that is, a number in the
// range -2 to -100, corresponding to real-time priorities 1 to 99. For processes running under a non-
// real-time scheduling policy, this is the raw nice value (setpriority(2)) as represented in the kernel.
// The kernel stores nice values as numbers in the range 0 (high) to 39 (low), corresponding to the user-
// visible nice range of -20 to 19.
//
// Before Linux 2.6, this was a scaled value based on the scheduler weighting given to this process.
long priority;
// nice %ld The nice value (see setpriority(2)), a value in the range 19 (low priority) to -20 (high priority).
long nice;
// num_threads %ld
// Number of threads in this process (since Linux 2.6). Before kernel 2.6, this field was hard coded to
// 0 as a placeholder for an earlier removed field.
long num_threads;
// itrealvalue %ld
// The time in jiffies before the next SIGALRM is sent to the process due to an interval timer. Since
// kernel 2.6.17, this field is no longer maintained, and is hard coded as 0.
long itrealvalue;
// starttime %llu (was %lu before Linux 2.6)
// The time in jiffies the process started after system boot.
long long starttime;
// vsize %lu Virtual memory size in bytes.
unsigned long vsize;
// rss %ld Resident Set Size: number of pages the process has in real memory. This is just the pages which count
// towards text, data, or stack space. This does not include pages which have not been demand-loaded in,
// or which are swapped out.
long rss;
// rsslim %lu Current soft limit in bytes on the rss of the process; see the description of RLIMIT_RSS in getprior-
// ity(2).
unsigned long rsslim;
// startcode %lu
// The address above which program text can run.
unsigned long startcode;
// endcode %lu The address below which program text can run.
unsigned long endcode;
// startstack %lu
// The address of the start (i.e., bottom) of the stack.
unsigned long startstack;
// kstkesp %lu The current value of ESP (stack pointer), as found in the kernel stack page for the process.
unsigned long kstkesp;
// kstkeip %lu The current EIP (instruction pointer).
unsigned long kstkeip;
// signal %lu The bitmap of pending signals, displayed as a decimal number. Obsolete, because it does not provide
// information on real-time signals; use /proc/[pid]/status instead.
unsigned long signal;
// blocked %lu The bitmap of blocked signals, displayed as a decimal number. Obsolete, because it does not provide
// information on real-time signals; use /proc/[pid]/status instead.
unsigned long blocked;
// sigignore %lu
// The bitmap of ignored signals, displayed as a decimal number. Obsolete, because it does not provide
// information on real-time signals; use /proc/[pid]/status instead.
unsigned long sigignore;
// sigcatch %lu
// The bitmap of caught signals, displayed as a decimal number. Obsolete, because it does not provide
// information on real-time signals; use /proc/[pid]/status instead.
unsigned long sigcatch;
// wchan %lu This is the "channel" in which the process is waiting. It is the address of a system call, and can be
// looked up in a namelist if you need a textual name. (If you have an up-to-date /etc/psdatabase, then
// try ps -l to see the WCHAN field in action.)
unsigned long wchan;
// nswap %lu Number of pages swapped (not maintained).
unsigned long nswap;
// cnswap %lu Cumulative nswap for child processes (not maintained).
unsigned long cnswap;
// exit_signal %d (since Linux 2.1.22)
// Signal to be sent to parent when we die.
int exit_signal;
// processor %d (since Linux 2.2.8)
// CPU number last executed on.
int processor;
// rt_priority %u (since Linux 2.5.19; was %lu before Linux 2.6.22)
// Real-time scheduling priority, a number in the range 1 to 99 for processes scheduled under a real-time
// policy, or 0, for non-real-time processes (see sched_setscheduler(2)).
unsigned int rt_priority;
// policy %u (since Linux 2.5.19; was %lu before Linux 2.6.22)
// Scheduling policy (see sched_setscheduler(2)). Decode using the SCHED_* constants in linux/sched.h.
unsigned int policy;
// delayacct_blkio_ticks %llu (since Linux 2.6.18)
// Aggregated block I/O delays, measured in clock ticks (centiseconds).
unsigned long long delayacct_blkio_ticks;
// guest_time %lu (since Linux 2.6.24)
// Guest time of the process (time spent running a virtual CPU for a guest operating system), measured in
// clock ticks (divide by sysconf(_SC_CLK_TCK).
unsigned long guest_time;
// cguest_time %ld (since Linux 2.6.24)
// Guest time of the process’s children, measured in clock ticks (divide by sysconf(_SC_CLK_TCK).
long cguest_time;
SrsProcSelfStat();
};
// @see: man 5 proc, /proc/stat
struct SrsProcSystemStat
{
// whether the data is ok.
bool ok;
// the time in ms when sample.
int64_t sample_time;
// the percent of usage. 0.153 is 15.3%.
float percent;
// always be cpu
char label[32];
//The amount of time, measured in units of USER_HZ (1/100ths of a second on most architectures, use
// sysconf(_SC_CLK_TCK) to obtain the right value)
//
// the system spent in user mode,
unsigned long user;
// user mode with low priority (nice),
unsigned long nice;
// system mode,
unsigned long sys;
// and the idle task, respectively.
unsigned long idle;
// In Linux 2.6 this line includes three additional columns:
//
// iowait - time waiting for I/O to complete (since 2.5.41);
unsigned long iowait;
// irq - time servicing interrupts (since 2.6.0-test4);
unsigned long irq;
// softirq - time servicing softirqs (since 2.6.0-test4).
unsigned long softirq;
// Since Linux 2.6.11, there is an eighth column,
// steal - stolen time, which is the time spent in other oper-
// ating systems when running in a virtualized environment
unsigned long steal;
// Since Linux 2.6.24, there is a ninth column,
// guest, which is the time spent running a virtual CPU for guest
// operating systems under the control of the Linux kernel.
unsigned long guest;
SrsProcSystemStat();
};
// get system cpu stat, use cache to avoid performance problem.
extern SrsProcSelfStat* srs_get_self_proc_stat();
// get system cpu stat, use cache to avoid performance problem.
extern SrsProcSystemStat* srs_get_system_proc_stat();
// the deamon st-thread will update it.
extern void srs_update_proc_stat();
// @see: cat /proc/meminfo
struct SrsMemInfo
{
// whether the data is ok.
bool ok;
// the time in ms when sample.
int64_t sample_time;
// the percent of usage. 0.153 is 15.3%.
float percent_ram;
float percent_swap;
// MemActive = MemTotal - MemFree
int64_t MemActive;
// RealInUse = MemActive - Buffers - Cached
int64_t RealInUse;
// NotInUse = MemTotal - RealInUse
// = MemTotal - MemActive + Buffers + Cached
// = MemTotal - MemTotal + MemFree + Buffers + Cached
// = MemFree + Buffers + Cached
int64_t NotInUse;
int64_t MemTotal;
int64_t MemFree;
int64_t Buffers;
int64_t Cached;
int64_t SwapTotal;
int64_t SwapFree;
SrsMemInfo();
};
// get system meminfo, use cache to avoid performance problem.
extern SrsMemInfo* srs_get_meminfo();
// the deamon st-thread will update it.
extern void srs_update_meminfo();
// @see: cat /proc/cpuinfo
struct SrsCpuInfo
{
// whether the data is ok.
bool ok;
// The number of processors configured.
int nb_processors;
// The number of processors currently online (available).
int nb_processors_online;
SrsCpuInfo();
};
// get system cpu info, use cache to avoid performance problem.
extern SrsCpuInfo* srs_get_cpuinfo();
// platform(os, srs) summary
struct SrsPlatformInfo
{
// whether the data is ok.
bool ok;
// srs startup time, in ms.
int64_t srs_startup_time;
// @see: cat /proc/uptime
double os_uptime;
double os_ilde_time;
// @see: cat /proc/loadavg
double load_one_minutes;
double load_five_minutes;
double load_fifteen_minutes;
SrsPlatformInfo();
};
// get platform info, use cache to avoid performance problem.
extern SrsPlatformInfo* srs_get_platform_info();
// the deamon st-thread will update it.
extern void srs_update_platform_info();
#endif
... ...
... ... @@ -31,7 +31,7 @@ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
// current release version
#define VERSION_MAJOR "0"
#define VERSION_MINOR "9"
#define VERSION_REVISION "98"
#define VERSION_REVISION "99"
#define RTMP_SIG_SRS_VERSION VERSION_MAJOR"."VERSION_MINOR"."VERSION_REVISION
// server info.
#define RTMP_SIG_SRS_KEY "srs"
... ...
... ... @@ -58,393 +58,3 @@ void srs_update_system_time_ms()
_srs_system_time_us_cache = now_us;
}
static SrsRusage _srs_system_rusage;
SrsRusage::SrsRusage()
{
ok = false;
sample_time = 0;
memset(&r, 0, sizeof(rusage));
}
SrsRusage* srs_get_system_rusage()
{
return &_srs_system_rusage;
}
void srs_update_system_rusage()
{
if (getrusage(RUSAGE_SELF, &_srs_system_rusage.r) < 0) {
srs_warn("getrusage failed, ignore");
return;
}
srs_update_system_time_ms();
_srs_system_rusage.sample_time = srs_get_system_time_ms();
_srs_system_rusage.ok = true;
}
static SrsProcSelfStat _srs_system_cpu_self_stat;
static SrsProcSystemStat _srs_system_cpu_system_stat;
SrsProcSelfStat::SrsProcSelfStat()
{
ok = false;
sample_time = 0;
percent = 0;
pid = 0;
memset(comm, 0, sizeof(comm));
state = 0;
ppid = 0;
pgrp = 0;
session = 0;
tty_nr = 0;
tpgid = 0;
flags = 0;
minflt = 0;
cminflt = 0;
majflt = 0;
cmajflt = 0;
utime = 0;
stime = 0;
cutime = 0;
cstime = 0;
priority = 0;
nice = 0;
num_threads = 0;
itrealvalue = 0;
starttime = 0;
vsize = 0;
rss = 0;
rsslim = 0;
startcode = 0;
endcode = 0;
startstack = 0;
kstkesp = 0;
kstkeip = 0;
signal = 0;
blocked = 0;
sigignore = 0;
sigcatch = 0;
wchan = 0;
nswap = 0;
cnswap = 0;
exit_signal = 0;
processor = 0;
rt_priority = 0;
policy = 0;
delayacct_blkio_ticks = 0;
guest_time = 0;
cguest_time = 0;
}
SrsProcSystemStat::SrsProcSystemStat()
{
ok = false;
sample_time = 0;
percent = 0;
memset(label, 0, sizeof(label));
user = 0;
nice = 0;
sys = 0;
idle = 0;
iowait = 0;
irq = 0;
softirq = 0;
steal = 0;
guest = 0;
}
SrsProcSelfStat* srs_get_self_proc_stat()
{
return &_srs_system_cpu_self_stat;
}
SrsProcSystemStat* srs_get_system_proc_stat()
{
return &_srs_system_cpu_system_stat;
}
bool get_proc_system_stat(SrsProcSystemStat& r)
{
FILE* f = fopen("/proc/stat", "r");
if (f == NULL) {
srs_warn("open system cpu stat failed, ignore");
return false;
}
for (;;) {
int ret = fscanf(f, "%4s %lu %lu %lu %lu %lu "
"%lu %lu %lu %lu\n",
r.label, &r.user, &r.nice, &r.sys, &r.idle, &r.iowait,
&r.irq, &r.softirq, &r.steal, &r.guest);
r.ok = false;
if (ret == EOF) {
break;
}
if (strcmp("cpu", r.label) == 0) {
r.ok = true;
break;
}
}
fclose(f);
return r.ok;
}
bool get_proc_self_stat(SrsProcSelfStat& r)
{
FILE* f = fopen("/proc/self/stat", "r");
if (f == NULL) {
srs_warn("open self cpu stat failed, ignore");
return false;
}
int ret = fscanf(f, "%d %32s %c %d %d %d %d "
"%d %u %lu %lu %lu %lu "
"%lu %lu %ld %ld %ld %ld "
"%ld %ld %llu %lu %ld "
"%lu %lu %lu %lu %lu "
"%lu %lu %lu %lu %lu "
"%lu %lu %lu %d %d "
"%u %u %llu "
"%lu %ld",
&r.pid, r.comm, &r.state, &r.ppid, &r.pgrp, &r.session, &r.tty_nr,
&r.tpgid, &r.flags, &r.minflt, &r.cminflt, &r.majflt, &r.cmajflt,
&r.utime, &r.stime, &r.cutime, &r.cstime, &r.priority, &r.nice,
&r.num_threads, &r.itrealvalue, &r.starttime, &r.vsize, &r.rss,
&r.rsslim, &r.startcode, &r.endcode, &r.startstack, &r.kstkesp,
&r.kstkeip, &r.signal, &r.blocked, &r.sigignore, &r.sigcatch,
&r.wchan, &r.nswap, &r.cnswap, &r.exit_signal, &r.processor,
&r.rt_priority, &r.policy, &r.delayacct_blkio_ticks,
&r.guest_time, &r.cguest_time);
fclose(f);
if (ret >= 0) {
r.ok = true;
}
return r.ok;
}
void srs_update_proc_stat()
{
srs_update_system_time_ms();
// system cpu stat
if (true) {
SrsProcSystemStat r;
if (!get_proc_system_stat(r)) {
return;
}
r.sample_time = srs_get_system_time_ms();
// calc usage in percent
SrsProcSystemStat& o = _srs_system_cpu_system_stat;
// @see: http://blog.csdn.net/nineday/article/details/1928847
int64_t total = (r.user + r.nice + r.sys + r.idle + r.iowait + r.irq + r.softirq + r.steal + r.guest)
- (o.user + o.nice + o.sys + o.idle + o.iowait + o.irq + o.softirq + o.steal + o.guest);
int64_t idle = r.idle - o.idle;
if (total > 0) {
r.percent = (float)(1 - idle / (double)total);
}
// upate cache.
_srs_system_cpu_system_stat = r;
}
// self cpu stat
if (true) {
SrsProcSelfStat r;
if (!get_proc_self_stat(r)) {
return;
}
srs_update_system_time_ms();
r.sample_time = srs_get_system_time_ms();
// calc usage in percent
SrsProcSelfStat& o = _srs_system_cpu_self_stat;
// @see: http://stackoverflow.com/questions/16011677/calculating-cpu-usage-using-proc-files
int64_t total = r.sample_time - o.sample_time;
int64_t usage = (r.utime + r.stime) - (o.utime + o.stime);
if (total > 0) {
r.percent = (float)(usage * 1000 / (double)total / 100);
}
// upate cache.
_srs_system_cpu_self_stat = r;
}
}
SrsMemInfo::SrsMemInfo()
{
ok = false;
sample_time = 0;
percent_ram = 0;
percent_swap = 0;
MemActive = 0;
RealInUse = 0;
NotInUse = 0;
MemTotal = 0;
MemFree = 0;
Buffers = 0;
Cached = 0;
SwapTotal = 0;
SwapFree = 0;
}
static SrsMemInfo _srs_system_meminfo;
SrsMemInfo* srs_get_meminfo()
{
return &_srs_system_meminfo;
}
void srs_update_meminfo()
{
FILE* f = fopen("/proc/meminfo", "r");
if (f == NULL) {
srs_warn("open meminfo failed, ignore");
return;
}
SrsMemInfo& r = _srs_system_meminfo;
r.ok = false;
for (;;) {
static char label[64];
static unsigned long value;
static char postfix[64];
int ret = fscanf(f, "%64s %lu %64s\n", label, &value, postfix);
if (ret == EOF) {
break;
}
if (strcmp("MemTotal:", label) == 0) {
r.MemTotal = value;
} else if (strcmp("MemFree:", label) == 0) {
r.MemFree = value;
} else if (strcmp("Buffers:", label) == 0) {
r.Buffers = value;
} else if (strcmp("Cached:", label) == 0) {
r.Cached = value;
} else if (strcmp("SwapTotal:", label) == 0) {
r.SwapTotal = value;
} else if (strcmp("SwapFree:", label) == 0) {
r.SwapFree = value;
}
}
fclose(f);
r.sample_time = srs_get_system_time_ms();
r.MemActive = r.MemTotal - r.MemFree;
r.RealInUse = r.MemActive - r.Buffers - r.Cached;
r.NotInUse = r.MemTotal - r.RealInUse;
r.ok = true;
if (r.MemTotal > 0) {
r.percent_ram = (float)(r.RealInUse / (double)r.MemTotal);
}
if (r.SwapTotal > 0) {
r.percent_swap = (float)((r.SwapTotal - r.SwapFree) / (double)r.SwapTotal);
}
}
SrsCpuInfo::SrsCpuInfo()
{
ok = false;
nb_processors = 0;
nb_processors_online = 0;
}
SrsCpuInfo* srs_get_cpuinfo()
{
static SrsCpuInfo* cpu = NULL;
if (cpu != NULL) {
return cpu;
}
// initialize cpu info.
cpu = new SrsCpuInfo();
cpu->ok = true;
cpu->nb_processors = sysconf(_SC_NPROCESSORS_CONF);
cpu->nb_processors_online = sysconf(_SC_NPROCESSORS_ONLN);
return cpu;
}
SrsPlatformInfo::SrsPlatformInfo()
{
ok = false;
srs_startup_time = srs_get_system_time_ms();
os_uptime = 0;
os_ilde_time = 0;
load_one_minutes = 0;
load_five_minutes = 0;
load_fifteen_minutes = 0;
}
static SrsPlatformInfo _srs_system_platform_info;
SrsPlatformInfo* srs_get_platform_info()
{
return &_srs_system_platform_info;
}
void srs_update_platform_info()
{
SrsPlatformInfo& r = _srs_system_platform_info;
r.ok = true;
if (true) {
FILE* f = fopen("/proc/uptime", "r");
if (f == NULL) {
srs_warn("open uptime failed, ignore");
return;
}
int ret = fscanf(f, "%lf %lf\n", &r.os_uptime, &r.os_ilde_time);
fclose(f);
if (ret < 0) {
r.ok = false;
}
}
if (true) {
FILE* f = fopen("/proc/loadavg", "r");
if (f == NULL) {
srs_warn("open loadavg failed, ignore");
return;
}
int ret = fscanf(f, "%lf %lf %lf\n",
&r.load_one_minutes, &r.load_five_minutes, &r.load_fifteen_minutes);
fclose(f);
if (ret < 0) {
r.ok = false;
}
}
}
... ...
... ... @@ -30,313 +30,9 @@ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include <srs_core.hpp>
#include <sys/resource.h>
// get current system time in ms, use cache to avoid performance problem
extern int64_t srs_get_system_time_ms();
// the deamon st-thread will update it.
extern void srs_update_system_time_ms();
// @see: man getrusage
struct SrsRusage
{
// whether the data is ok.
bool ok;
// the time in ms when sample.
int64_t sample_time;
rusage r;
SrsRusage();
};
// get system rusage, use cache to avoid performance problem.
extern SrsRusage* srs_get_system_rusage();
// the deamon st-thread will update it.
extern void srs_update_system_rusage();
// @see: man 5 proc, /proc/[pid]/stat
struct SrsProcSelfStat
{
// whether the data is ok.
bool ok;
// the time in ms when sample.
int64_t sample_time;
// the percent of usage. 0.153 is 15.3%.
float percent;
// pid %d The process ID.
int pid;
// comm %s The filename of the executable, in parentheses. This is visible whether or not the executable is
// swapped out.
char comm[32];
// state %c One character from the string "RSDZTW" where R is running, S is sleeping in an interruptible wait, D
// is waiting in uninterruptible disk sleep, Z is zombie, T is traced or stopped (on a signal), and W is
// paging.
char state;
// ppid %d The PID of the parent.
int ppid;
// pgrp %d The process group ID of the process.
int pgrp;
// session %d The session ID of the process.
int session;
// tty_nr %d The controlling terminal of the process. (The minor device number is contained in the combination of
// bits 31 to 20 and 7 to 0; the major device number is in bits 15 t0 8.)
int tty_nr;
// tpgid %d The ID of the foreground process group of the controlling terminal of the process.
int tpgid;
// flags %u (%lu before Linux 2.6.22)
// The kernel flags word of the process. For bit meanings, see the PF_* defines in <linux/sched.h>.
// Details depend on the kernel version.
unsigned int flags;
// minflt %lu The number of minor faults the process has made which have not required loading a memory page from
// disk.
unsigned long minflt;
// cminflt %lu The number of minor faults that the process’s waited-for children have made.
unsigned long cminflt;
// majflt %lu The number of major faults the process has made which have required loading a memory page from disk.
unsigned long majflt;
// cmajflt %lu The number of major faults that the process’s waited-for children have made.
unsigned long cmajflt;
// utime %lu Amount of time that this process has been scheduled in user mode, measured in clock ticks (divide by
// sysconf(_SC_CLK_TCK). This includes guest time, guest_time (time spent running a virtual CPU, see
// below), so that applications that are not aware of the guest time field do not lose that time from
// their calculations.
unsigned long utime;
// stime %lu Amount of time that this process has been scheduled in kernel mode, measured in clock ticks (divide by
// sysconf(_SC_CLK_TCK).
unsigned long stime;
// cutime %ld Amount of time that this process’s waited-for children have been scheduled in user mode, measured in
// clock ticks (divide by sysconf(_SC_CLK_TCK). (See also times(2).) This includes guest time,
// cguest_time (time spent running a virtual CPU, see below).
long cutime;
// cstime %ld Amount of time that this process’s waited-for children have been scheduled in kernel mode, measured in
// clock ticks (divide by sysconf(_SC_CLK_TCK).
long cstime;
// priority %ld
// (Explanation for Linux 2.6) For processes running a real-time scheduling policy (policy below; see
// sched_setscheduler(2)), this is the negated scheduling priority, minus one; that is, a number in the
// range -2 to -100, corresponding to real-time priorities 1 to 99. For processes running under a non-
// real-time scheduling policy, this is the raw nice value (setpriority(2)) as represented in the kernel.
// The kernel stores nice values as numbers in the range 0 (high) to 39 (low), corresponding to the user-
// visible nice range of -20 to 19.
//
// Before Linux 2.6, this was a scaled value based on the scheduler weighting given to this process.
long priority;
// nice %ld The nice value (see setpriority(2)), a value in the range 19 (low priority) to -20 (high priority).
long nice;
// num_threads %ld
// Number of threads in this process (since Linux 2.6). Before kernel 2.6, this field was hard coded to
// 0 as a placeholder for an earlier removed field.
long num_threads;
// itrealvalue %ld
// The time in jiffies before the next SIGALRM is sent to the process due to an interval timer. Since
// kernel 2.6.17, this field is no longer maintained, and is hard coded as 0.
long itrealvalue;
// starttime %llu (was %lu before Linux 2.6)
// The time in jiffies the process started after system boot.
long long starttime;
// vsize %lu Virtual memory size in bytes.
unsigned long vsize;
// rss %ld Resident Set Size: number of pages the process has in real memory. This is just the pages which count
// towards text, data, or stack space. This does not include pages which have not been demand-loaded in,
// or which are swapped out.
long rss;
// rsslim %lu Current soft limit in bytes on the rss of the process; see the description of RLIMIT_RSS in getprior-
// ity(2).
unsigned long rsslim;
// startcode %lu
// The address above which program text can run.
unsigned long startcode;
// endcode %lu The address below which program text can run.
unsigned long endcode;
// startstack %lu
// The address of the start (i.e., bottom) of the stack.
unsigned long startstack;
// kstkesp %lu The current value of ESP (stack pointer), as found in the kernel stack page for the process.
unsigned long kstkesp;
// kstkeip %lu The current EIP (instruction pointer).
unsigned long kstkeip;
// signal %lu The bitmap of pending signals, displayed as a decimal number. Obsolete, because it does not provide
// information on real-time signals; use /proc/[pid]/status instead.
unsigned long signal;
// blocked %lu The bitmap of blocked signals, displayed as a decimal number. Obsolete, because it does not provide
// information on real-time signals; use /proc/[pid]/status instead.
unsigned long blocked;
// sigignore %lu
// The bitmap of ignored signals, displayed as a decimal number. Obsolete, because it does not provide
// information on real-time signals; use /proc/[pid]/status instead.
unsigned long sigignore;
// sigcatch %lu
// The bitmap of caught signals, displayed as a decimal number. Obsolete, because it does not provide
// information on real-time signals; use /proc/[pid]/status instead.
unsigned long sigcatch;
// wchan %lu This is the "channel" in which the process is waiting. It is the address of a system call, and can be
// looked up in a namelist if you need a textual name. (If you have an up-to-date /etc/psdatabase, then
// try ps -l to see the WCHAN field in action.)
unsigned long wchan;
// nswap %lu Number of pages swapped (not maintained).
unsigned long nswap;
// cnswap %lu Cumulative nswap for child processes (not maintained).
unsigned long cnswap;
// exit_signal %d (since Linux 2.1.22)
// Signal to be sent to parent when we die.
int exit_signal;
// processor %d (since Linux 2.2.8)
// CPU number last executed on.
int processor;
// rt_priority %u (since Linux 2.5.19; was %lu before Linux 2.6.22)
// Real-time scheduling priority, a number in the range 1 to 99 for processes scheduled under a real-time
// policy, or 0, for non-real-time processes (see sched_setscheduler(2)).
unsigned int rt_priority;
// policy %u (since Linux 2.5.19; was %lu before Linux 2.6.22)
// Scheduling policy (see sched_setscheduler(2)). Decode using the SCHED_* constants in linux/sched.h.
unsigned int policy;
// delayacct_blkio_ticks %llu (since Linux 2.6.18)
// Aggregated block I/O delays, measured in clock ticks (centiseconds).
unsigned long long delayacct_blkio_ticks;
// guest_time %lu (since Linux 2.6.24)
// Guest time of the process (time spent running a virtual CPU for a guest operating system), measured in
// clock ticks (divide by sysconf(_SC_CLK_TCK).
unsigned long guest_time;
// cguest_time %ld (since Linux 2.6.24)
// Guest time of the process’s children, measured in clock ticks (divide by sysconf(_SC_CLK_TCK).
long cguest_time;
SrsProcSelfStat();
};
// @see: man 5 proc, /proc/stat
struct SrsProcSystemStat
{
// whether the data is ok.
bool ok;
// the time in ms when sample.
int64_t sample_time;
// the percent of usage. 0.153 is 15.3%.
float percent;
// always be cpu
char label[32];
//The amount of time, measured in units of USER_HZ (1/100ths of a second on most architectures, use
// sysconf(_SC_CLK_TCK) to obtain the right value)
//
// the system spent in user mode,
unsigned long user;
// user mode with low priority (nice),
unsigned long nice;
// system mode,
unsigned long sys;
// and the idle task, respectively.
unsigned long idle;
// In Linux 2.6 this line includes three additional columns:
//
// iowait - time waiting for I/O to complete (since 2.5.41);
unsigned long iowait;
// irq - time servicing interrupts (since 2.6.0-test4);
unsigned long irq;
// softirq - time servicing softirqs (since 2.6.0-test4).
unsigned long softirq;
// Since Linux 2.6.11, there is an eighth column,
// steal - stolen time, which is the time spent in other oper-
// ating systems when running in a virtualized environment
unsigned long steal;
// Since Linux 2.6.24, there is a ninth column,
// guest, which is the time spent running a virtual CPU for guest
// operating systems under the control of the Linux kernel.
unsigned long guest;
SrsProcSystemStat();
};
// get system cpu stat, use cache to avoid performance problem.
extern SrsProcSelfStat* srs_get_self_proc_stat();
// get system cpu stat, use cache to avoid performance problem.
extern SrsProcSystemStat* srs_get_system_proc_stat();
// the deamon st-thread will update it.
extern void srs_update_proc_stat();
// @see: cat /proc/meminfo
struct SrsMemInfo
{
// whether the data is ok.
bool ok;
// the time in ms when sample.
int64_t sample_time;
// the percent of usage. 0.153 is 15.3%.
float percent_ram;
float percent_swap;
// MemActive = MemTotal - MemFree
int64_t MemActive;
// RealInUse = MemActive - Buffers - Cached
int64_t RealInUse;
// NotInUse = MemTotal - RealInUse
// = MemTotal - MemActive + Buffers + Cached
// = MemTotal - MemTotal + MemFree + Buffers + Cached
// = MemFree + Buffers + Cached
int64_t NotInUse;
int64_t MemTotal;
int64_t MemFree;
int64_t Buffers;
int64_t Cached;
int64_t SwapTotal;
int64_t SwapFree;
SrsMemInfo();
};
// get system meminfo, use cache to avoid performance problem.
extern SrsMemInfo* srs_get_meminfo();
// the deamon st-thread will update it.
extern void srs_update_meminfo();
// @see: cat /proc/cpuinfo
struct SrsCpuInfo
{
// whether the data is ok.
bool ok;
// The number of processors configured.
int nb_processors;
// The number of processors currently online (available).
int nb_processors_online;
SrsCpuInfo();
};
// get system cpu info, use cache to avoid performance problem.
extern SrsCpuInfo* srs_get_cpuinfo();
// platform(os, srs) summary
struct SrsPlatformInfo
{
// whether the data is ok.
bool ok;
// srs startup time, in ms.
int64_t srs_startup_time;
// @see: cat /proc/uptime
double os_uptime;
double os_ilde_time;
// @see: cat /proc/loadavg
double load_one_minutes;
double load_five_minutes;
double load_fifteen_minutes;
SrsPlatformInfo();
};
// get platform info, use cache to avoid performance problem.
extern SrsPlatformInfo* srs_get_platform_info();
// the deamon st-thread will update it.
extern void srs_update_platform_info();
#endif
... ...