srs_protocol_handshake.cpp 40.0 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
/*
The MIT License (MIT)

Copyright (c) 2013-2014 winlin

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/

#include <srs_protocol_handshake.hpp>

#include <time.h>

#include <srs_core_autofree.hpp>
#include <srs_kernel_error.hpp>
#include <srs_kernel_log.hpp>
#include <srs_protocol_io.hpp>
#include <srs_protocol_utility.hpp>
#include <srs_protocol_rtmp.hpp>
#include <srs_kernel_stream.hpp>

#ifdef SRS_AUTO_SSL

using namespace _srs_internal;

// for openssl_HMACsha256
#include <openssl/evp.h>
#include <openssl/hmac.h>
// for __openssl_generate_key
#include <openssl/dh.h>

namespace _srs_internal
{
    // 68bytes FMS key which is used to sign the sever packet.
    u_int8_t SrsGenuineFMSKey[] = {
        0x47, 0x65, 0x6e, 0x75, 0x69, 0x6e, 0x65, 0x20,
        0x41, 0x64, 0x6f, 0x62, 0x65, 0x20, 0x46, 0x6c,
        0x61, 0x73, 0x68, 0x20, 0x4d, 0x65, 0x64, 0x69,
        0x61, 0x20, 0x53, 0x65, 0x72, 0x76, 0x65, 0x72,
        0x20, 0x30, 0x30, 0x31, // Genuine Adobe Flash Media Server 001
        0xf0, 0xee, 0xc2, 0x4a, 0x80, 0x68, 0xbe, 0xe8,
        0x2e, 0x00, 0xd0, 0xd1, 0x02, 0x9e, 0x7e, 0x57,
        0x6e, 0xec, 0x5d, 0x2d, 0x29, 0x80, 0x6f, 0xab,
        0x93, 0xb8, 0xe6, 0x36, 0xcf, 0xeb, 0x31, 0xae
    }; // 68
    
    // 62bytes FP key which is used to sign the client packet.
    u_int8_t SrsGenuineFPKey[] = {
        0x47, 0x65, 0x6E, 0x75, 0x69, 0x6E, 0x65, 0x20,
        0x41, 0x64, 0x6F, 0x62, 0x65, 0x20, 0x46, 0x6C,
        0x61, 0x73, 0x68, 0x20, 0x50, 0x6C, 0x61, 0x79,
        0x65, 0x72, 0x20, 0x30, 0x30, 0x31, // Genuine Adobe Flash Player 001
        0xF0, 0xEE, 0xC2, 0x4A, 0x80, 0x68, 0xBE, 0xE8,
        0x2E, 0x00, 0xD0, 0xD1, 0x02, 0x9E, 0x7E, 0x57,
        0x6E, 0xEC, 0x5D, 0x2D, 0x29, 0x80, 0x6F, 0xAB,
        0x93, 0xB8, 0xE6, 0x36, 0xCF, 0xEB, 0x31, 0xAE
    }; // 62
    
    int __openssl_HMACsha256(HMAC_CTX* ctx, const void* data, int data_size, void* digest, unsigned int* digest_size) 
    {
        int ret = ERROR_SUCCESS;
        
        if (HMAC_Update(ctx, (unsigned char *) data, data_size) < 0) {
            ret = ERROR_OpenSslSha256Update;
            return ret;
        }
    
        if (HMAC_Final(ctx, (unsigned char *) digest, digest_size) < 0) {
            ret = ERROR_OpenSslSha256Final;
            return ret;
        }
        
        return ret;
    }
    /**
    * sha256 digest algorithm.
    * @param key the sha256 key, NULL to use EVP_Digest, for instance,
    *       hashlib.sha256(data).digest().
    */
    int openssl_HMACsha256(const void* key, int key_size, const void* data, int data_size, void* digest) 
    {
        int ret = ERROR_SUCCESS;
        
        unsigned int digest_size = 0;
        
        unsigned char* __key = (unsigned char*)key;
        unsigned char* __digest = (unsigned char*)digest;
        
        if (key == NULL) {
            // use data to digest.
            // @see ./crypto/sha/sha256t.c
            // @see ./crypto/evp/digest.c
            if (EVP_Digest(data, data_size, __digest, &digest_size, EVP_sha256(), NULL) < 0)
            {
                ret = ERROR_OpenSslSha256EvpDigest;
                return ret;
            }
        } else {
            // use key-data to digest.
            HMAC_CTX ctx;
            
            // @remark, if no key, use EVP_Digest to digest,
            // for instance, in python, hashlib.sha256(data).digest().
            HMAC_CTX_init(&ctx);
            
            if (HMAC_Init_ex(&ctx, __key, key_size, EVP_sha256(), NULL) < 0) {
                ret = ERROR_OpenSslSha256Init;
                return ret;
            }
            
            ret = __openssl_HMACsha256(&ctx, data, data_size, __digest, &digest_size);
            HMAC_CTX_cleanup(&ctx);
            
            if (ret != ERROR_SUCCESS) {
                return ret;
            }
        }
        
        if (digest_size != 32) {
            ret = ERROR_OpenSslSha256DigestSize;
            return ret;
        }
        
        return ret;
    }
    
    #define RFC2409_PRIME_1024 \
            "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" \
            "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" \
            "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" \
            "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" \
            "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381" \
            "FFFFFFFFFFFFFFFF"
    /**
    * initialize DH, create the public/private key.
    */
    int __openssl_initialize_dh(DH* pdh, int32_t bits_count) 
    {
        int ret = ERROR_SUCCESS;
    
        //2. Create his internal p and g
        if ((pdh->p = BN_new()) == NULL) {
            ret = ERROR_OpenSslCreateP; 
            return ret;
        }
        if ((pdh->g = BN_new()) == NULL) {
            ret = ERROR_OpenSslCreateG; 
            return ret;
        }
    
        //3. initialize p and g
        if (BN_hex2bn(&pdh->p, RFC2409_PRIME_1024) == 0) {
            ret = ERROR_OpenSslParseP1024; 
            return ret;
        }
        if (BN_set_word(pdh->g, 2) != 1) {
            ret = ERROR_OpenSslSetG;
            return ret;
        }
    
        //4. Set the key length
        pdh->length = bits_count;
    
        //5. Generate private and public key
        if (DH_generate_key(pdh) != 1) {
            ret = ERROR_OpenSslGenerateDHKeys;
            return ret;
        }
        
        return ret;
    }
    /**
    * create DH and copy the 128bytes public key.
    */
    int __openssl_copy_key(DH* pdh, char* public_key, int32_t size)
    {
        int ret = ERROR_SUCCESS;
        
        int32_t bits_count = 1024; 
        
        // 2. generate the g, p, private/public key.
        if ((ret = __openssl_initialize_dh(pdh, bits_count)) != ERROR_SUCCESS) {
            return ret;
        }
        
        // copy public key to bytes.
        // sometimes, the key_size is 127, seems ok.
        int32_t key_size = BN_num_bytes(pdh->pub_key);
        srs_assert(key_size > 0);
        
        if (BN_bn2bin(pdh->pub_key, (unsigned char*)public_key) != size) {
            //("Unable to copy key"); return ret;
            ret = ERROR_OpenSslCopyKey;
            return ret;
        }
        
        return ret;
    }
    /**
    * use exists DH to create and copy the 128bytes shared key.
    * the peer public key used to generate the shared key.
    */
    int __openssl_copy_shared_key(DH* pdh, const char* peer_pub_key, int ppk_size, char* shared_key)
    {
        int ret = ERROR_SUCCESS;
        
        BIGNUM* ppk = NULL;
        if ((ppk = BN_bin2bn((const unsigned char*)peer_pub_key, ppk_size, 0)) == NULL) {
            ret = ERROR_OpenSslGetPeerPublicKey;
            return ret;
        }
        
        // if failed, donot return, do cleanup.
        if (DH_compute_key((unsigned char*)shared_key, ppk, pdh) < 0) {
            ret = ERROR_OpenSslComputeSharedKey;
        }
        
        if (ppk) {
            BN_free(ppk);
        }
        
        return ret;
    }
    /**
    * create DH and copy the 128bytes public key,
    * generate and copy the shared key.
    */
    int __openssl_compute_key(DH* pdh, const char* peer_pub_key, int ppk_size, char* public_key, char* shared_key)
    {
        int ret = ERROR_SUCCESS;
        
        // create DH and copy the 128bytes public key
        if ((ret = __openssl_copy_key(pdh, public_key, ppk_size)) != ERROR_SUCCESS) {
            return ret;
        }
        
        // generate and copy the shared key
        if ((ret = __openssl_copy_shared_key(pdh, peer_pub_key, ppk_size, shared_key)) != ERROR_SUCCESS) {
            return ret;
        }
        
        return ret;
    }
    void __openssl_free(DH* pdh)
    {
        if (pdh != NULL) {
            if (pdh->p != NULL) {
                BN_free(pdh->p);
                pdh->p = NULL;
            }
            if (pdh->g != NULL) {
                BN_free(pdh->g);
                pdh->g = NULL;
            }
            DH_free(pdh);
            pdh = NULL;
        }
    }
    int openssl_generate_key(char* public_key, int32_t size)
    {
        int ret = ERROR_SUCCESS;
    
        // Initialize
        DH* pdh = NULL;
    
        //1. Create the DH
        if ((pdh = DH_new()) == NULL) {
            ret = ERROR_OpenSslCreateDH; 
            return ret;
        }
        
        // generate and copy key.
        ret = __openssl_copy_key(pdh, public_key, size);
        
        // cleanup
        __openssl_free(pdh);
    
        return ret;
    }
    
    // read/write stream using SrsStream.
    void __srs_stream_write_4bytes(char* pp, int32_t value) 
    {
        static SrsStream stream;
        
        int ret = stream.initialize(pp, 4);
        srs_assert(ret == ERROR_SUCCESS);
        
        stream.write_4bytes(value);
    }
    int32_t __srs_stream_read_4bytes(char* pp)
    {
        static SrsStream stream;
        
        int ret = stream.initialize(pp, 4);
        srs_assert(ret == ERROR_SUCCESS);
        
        return stream.read_4bytes();
    }
    
    // calc the offset of key,
    // the key->offset cannot be used as the offset of key.
    int srs_key_block_get_offset(key_block* key)
    {
        int max_offset_size = 764 - 128 - 4;
        
        int offset = 0;
        u_int8_t* pp = (u_int8_t*)&key->offset;
        offset += *pp++;
        offset += *pp++;
        offset += *pp++;
        offset += *pp++;
    
        return offset % max_offset_size;
    }
    
    // create new key block data.
    // if created, user must free it by srs_key_block_free
    void srs_key_block_init(key_block* key)
    {
        key->offset = (int32_t)rand();
        key->random0 = NULL;
        key->random1 = NULL;
        
        int offset = srs_key_block_get_offset(key);
        srs_assert(offset >= 0);
        
        key->random0_size = offset;
        if (key->random0_size > 0) {
            key->random0 = new char[key->random0_size];
            srs_random_generate(key->random0, key->random0_size);
            snprintf(key->random0, key->random0_size, "%s", RTMP_SIG_SRS_HANDSHAKE);
        }
        
        srs_random_generate(key->key, sizeof(key->key));
        
        key->random1_size = 764 - offset - 128 - 4;
        if (key->random1_size > 0) {
            key->random1 = new char[key->random1_size];
            srs_random_generate(key->random1, key->random1_size);
            snprintf(key->random1, key->random1_size, "%s", RTMP_SIG_SRS_HANDSHAKE);
        }
    }
    
    // parse key block from c1s1.
    // if created, user must free it by srs_key_block_free
    // @c1s1_key_bytes the key start bytes, maybe c1s1 or c1s1+764
    int srs_key_block_parse(key_block* key, char* c1s1_key_bytes)
    {
        int ret = ERROR_SUCCESS;
    
        char* pp = c1s1_key_bytes + 764;
        
        pp -= sizeof(int32_t);
        key->offset = __srs_stream_read_4bytes(pp);
        
        key->random0 = NULL;
        key->random1 = NULL;
        
        int offset = srs_key_block_get_offset(key);
        srs_assert(offset >= 0);
        
        pp = c1s1_key_bytes;
        key->random0_size = offset;
        if (key->random0_size > 0) {
            key->random0 = new char[key->random0_size];
            memcpy(key->random0, pp, key->random0_size);
        }
        pp += key->random0_size;
        
        memcpy(key->key, pp, sizeof(key->key));
        pp += sizeof(key->key);
        
        key->random1_size = 764 - offset - 128 - 4;
        if (key->random1_size > 0) {
            key->random1 = new char[key->random1_size];
            memcpy(key->random1, pp, key->random1_size);
        }
        
        return ret;
    }
    
    // free the block data create by 
    // srs_key_block_init or srs_key_block_parse
    void srs_key_block_free(key_block* key)
    {
        if (key->random0) {
            srs_freep(key->random0);
        }
        if (key->random1) {
            srs_freep(key->random1);
        }
    }
    
    // calc the offset of digest,
    // the key->offset cannot be used as the offset of digest.
    int srs_digest_block_get_offset(digest_block* digest)
    {
        int max_offset_size = 764 - 32 - 4;
        
        int offset = 0;
        u_int8_t* pp = (u_int8_t*)&digest->offset;
        offset += *pp++;
        offset += *pp++;
        offset += *pp++;
        offset += *pp++;
    
        return offset % max_offset_size;
    }
    
    // create new digest block data.
    // if created, user must free it by srs_digest_block_free
    void srs_digest_block_init(digest_block* digest)
    {
        digest->offset = (int32_t)rand();
        digest->random0 = NULL;
        digest->random1 = NULL;
        
        int offset = srs_digest_block_get_offset(digest);
        srs_assert(offset >= 0);
        
        digest->random0_size = offset;
        if (digest->random0_size > 0) {
            digest->random0 = new char[digest->random0_size];
            srs_random_generate(digest->random0, digest->random0_size);
            snprintf(digest->random0, digest->random0_size, "%s", RTMP_SIG_SRS_HANDSHAKE);
        }
        
        srs_random_generate(digest->digest, sizeof(digest->digest));
        
        digest->random1_size = 764 - 4 - offset - 32;
        if (digest->random1_size > 0) {
            digest->random1 = new char[digest->random1_size];
            srs_random_generate(digest->random1, digest->random1_size);
            snprintf(digest->random1, digest->random1_size, "%s", RTMP_SIG_SRS_HANDSHAKE);
        }
    }

    // parse digest block from c1s1.
    // if created, user must free it by srs_digest_block_free
    // @c1s1_digest_bytes the digest start bytes, maybe c1s1 or c1s1+764
    int srs_digest_block_parse(digest_block* digest, char* c1s1_digest_bytes)
    {
        int ret = ERROR_SUCCESS;
    
        char* pp = c1s1_digest_bytes;
        
        digest->offset = __srs_stream_read_4bytes(pp);
        pp += sizeof(int32_t);
        
        digest->random0 = NULL;
        digest->random1 = NULL;
        
        int offset = srs_digest_block_get_offset(digest);
        srs_assert(offset >= 0);
        
        digest->random0_size = offset;
        if (digest->random0_size > 0) {
            digest->random0 = new char[digest->random0_size];
            memcpy(digest->random0, pp, digest->random0_size);
        }
        pp += digest->random0_size;
        
        memcpy(digest->digest, pp, sizeof(digest->digest));
        pp += sizeof(digest->digest);
        
        digest->random1_size = 764 - 4 - offset - 32;
        if (digest->random1_size > 0) {
            digest->random1 = new char[digest->random1_size];
            memcpy(digest->random1, pp, digest->random1_size);
        }
        
        return ret;
    }
    
    // free the block data create by 
    // srs_digest_block_init or srs_digest_block_parse
    void srs_digest_block_free(digest_block* digest)
    {
        if (digest->random0) {
            srs_freep(digest->random0);
        }
        if (digest->random1) {
            srs_freep(digest->random1);
        }
    }
    
    void __srs_time_copy_to(char*& pp, int32_t time)
    {
        // 4bytes time
        __srs_stream_write_4bytes(pp, time);
        pp += 4;
    }
    void __srs_version_copy_to(char*& pp, int32_t version)
    {
        // 4bytes version
        __srs_stream_write_4bytes(pp, version);
        pp += 4;
    }
    void __srs_key_copy_to(char*& pp, key_block* key)
    {
        // 764bytes key block
        if (key->random0_size > 0) {
            memcpy(pp, key->random0, key->random0_size);
        }
        pp += key->random0_size;
        
        memcpy(pp, key->key, sizeof(key->key));
        pp += sizeof(key->key);
        
        if (key->random1_size > 0) {
            memcpy(pp, key->random1, key->random1_size);
        }
        pp += key->random1_size;
        
        __srs_stream_write_4bytes(pp, key->offset);
        pp += 4;
    }
    void __srs_digest_copy_to(char*& pp, digest_block* digest, bool with_digest)
    {
        // 732bytes digest block without the 32bytes digest-data
        // nbytes digest block part1
        __srs_stream_write_4bytes(pp, digest->offset);
        pp += 4;
        
        // digest random padding.
        if (digest->random0_size > 0) {
            memcpy(pp, digest->random0, digest->random0_size);
        }
        pp += digest->random0_size;
        
        // digest
        if (with_digest) {
            memcpy(pp, digest->digest, 32);
            pp += 32;
        }
        
        // nbytes digest block part2
        if (digest->random1_size > 0) {
            memcpy(pp, digest->random1, digest->random1_size);
        }
        pp += digest->random1_size;
    }
    
    /**
    * copy whole c1s1 to bytes.
    */
    void srs_schema0_copy_to(char* bytes, bool with_digest, 
        int32_t time, int32_t version, key_block* key, digest_block* digest)
    {
        char* pp = bytes;
    
        __srs_time_copy_to(pp, time);
        __srs_version_copy_to(pp, version);
        __srs_key_copy_to(pp, key);
        __srs_digest_copy_to(pp, digest, with_digest);
        
        if (with_digest) {
            srs_assert(pp - bytes == 1536);
        } else {
            srs_assert(pp - bytes == 1536 - 32);
        }
    }
    void srs_schema1_copy_to(char* bytes, bool with_digest, 
        int32_t time, int32_t version, digest_block* digest, key_block* key)
    {
        char* pp = bytes;
    
        __srs_time_copy_to(pp, time);
        __srs_version_copy_to(pp, version);
        __srs_digest_copy_to(pp, digest, with_digest);
        __srs_key_copy_to(pp, key);
        
        if (with_digest) {
            srs_assert(pp - bytes == 1536);
        } else {
            srs_assert(pp - bytes == 1536 - 32);
        }
    }
    
    /**
    * c1s1 is splited by digest:
    *     c1s1-part1: n bytes (time, version, key and digest-part1).
    *     digest-data: 32bytes
    *     c1s1-part2: (1536-n-32)bytes (digest-part2)
    */
    char* srs_bytes_join_schema0(int32_t time, int32_t version, key_block* key, digest_block* digest)
    {
        char* bytes = new char[1536 -32];
        
        srs_schema0_copy_to(bytes, false, time, version, key, digest);
        
        return bytes;
    }
    
    /**
    * c1s1 is splited by digest:
    *     c1s1-part1: n bytes (time, version and digest-part1).
    *     digest-data: 32bytes
    *     c1s1-part2: (1536-n-32)bytes (digest-part2 and key)
    */
    char* srs_bytes_join_schema1(int32_t time, int32_t version, digest_block* digest, key_block* key)
    {
        char* bytes = new char[1536 -32];
        
        srs_schema1_copy_to(bytes, false, time, version, digest, key);
        
        return bytes;
    }
    
    c2s2::c2s2()
    {
        srs_random_generate(random, 1504);
        
        int size = snprintf(random, 1504, "%s", RTMP_SIG_SRS_HANDSHAKE);
        srs_assert(++size < 1504);
        snprintf(random + 1504 - size, size, "%s", RTMP_SIG_SRS_HANDSHAKE);
        
        srs_random_generate(digest, 32);
    }
    
    c2s2::~c2s2()
    {
    }
    
    void c2s2::dump(char* _c2s2)
    {
        memcpy(_c2s2, random, 1504);
        memcpy(_c2s2 + 1504, digest, 32);
    }
    
    void c2s2::parse(char* _c2s2)
    {
        memcpy(random, _c2s2, 1504);
        memcpy(digest, _c2s2 + 1504, 32);
    }
    
    int c2s2::c2_create(c1s1* s1)
    {
        int ret = ERROR_SUCCESS;
        
        char temp_key[__SRS_OpensslHashSize];
        if ((ret = openssl_HMACsha256(SrsGenuineFPKey, 62, s1->get_digest(), 32, temp_key)) != ERROR_SUCCESS) {
            srs_error("create c2 temp key failed. ret=%d", ret);
            return ret;
        }
        srs_verbose("generate c2 temp key success.");
        
        char _digest[__SRS_OpensslHashSize];
        if ((ret = openssl_HMACsha256(temp_key, 32, random, 1504, _digest)) != ERROR_SUCCESS) {
            srs_error("create c2 digest failed. ret=%d", ret);
            return ret;
        }
        srs_verbose("generate c2 digest success.");
        
        memcpy(digest, _digest, 32);
        
        return ret;
    }
    
    int c2s2::c2_validate(c1s1* s1, bool& is_valid)
    {
        is_valid = false;
        int ret = ERROR_SUCCESS;
        
        char temp_key[__SRS_OpensslHashSize];
        if ((ret = openssl_HMACsha256(SrsGenuineFPKey, 62, s1->get_digest(), 32, temp_key)) != ERROR_SUCCESS) {
            srs_error("create c2 temp key failed. ret=%d", ret);
            return ret;
        }
        srs_verbose("generate c2 temp key success.");
        
        char _digest[__SRS_OpensslHashSize];
        if ((ret = openssl_HMACsha256(temp_key, 32, random, 1504, _digest)) != ERROR_SUCCESS) {
            srs_error("create c2 digest failed. ret=%d", ret);
            return ret;
        }
        srs_verbose("generate c2 digest success.");
        
        is_valid = srs_bytes_equals(digest, _digest, 32);
        
        return ret;
    }
    
    int c2s2::s2_create(c1s1* c1)
    {
        int ret = ERROR_SUCCESS;
        
        char temp_key[__SRS_OpensslHashSize];
        if ((ret = openssl_HMACsha256(SrsGenuineFMSKey, 68, c1->get_digest(), 32, temp_key)) != ERROR_SUCCESS) {
            srs_error("create s2 temp key failed. ret=%d", ret);
            return ret;
        }
        srs_verbose("generate s2 temp key success.");
        
        char _digest[__SRS_OpensslHashSize];
        if ((ret = openssl_HMACsha256(temp_key, 32, random, 1504, _digest)) != ERROR_SUCCESS) {
            srs_error("create s2 digest failed. ret=%d", ret);
            return ret;
        }
        srs_verbose("generate s2 digest success.");
        
        memcpy(digest, _digest, 32);
        
        return ret;
    }
    
    int c2s2::s2_validate(c1s1* c1, bool& is_valid)
    {
        is_valid = false;
        int ret = ERROR_SUCCESS;
        
        char temp_key[__SRS_OpensslHashSize];
        if ((ret = openssl_HMACsha256(SrsGenuineFMSKey, 68, c1->get_digest(), 32, temp_key)) != ERROR_SUCCESS) {
            srs_error("create s2 temp key failed. ret=%d", ret);
            return ret;
        }
        srs_verbose("generate s2 temp key success.");
        
        char _digest[__SRS_OpensslHashSize];
        if ((ret = openssl_HMACsha256(temp_key, 32, random, 1504, _digest)) != ERROR_SUCCESS) {
            srs_error("create s2 digest failed. ret=%d", ret);
            return ret;
        }
        srs_verbose("generate s2 digest success.");
        
        is_valid = srs_bytes_equals(digest, _digest, 32);
        
        return ret;
    }
    
    // TODO: FIXME: move to the right position.
    c1s1::c1s1()
    {
        schema = srs_schema_invalid;
    }
    c1s1::~c1s1()
    {
        destroy_blocks();
    }
    
    char* c1s1::get_digest()
    {
        srs_assert(schema != srs_schema_invalid);
        
        if (schema == srs_schema0) {
            return block1.digest.digest;
        } else {
            return block0.digest.digest;
        }
    }
    
    void c1s1::dump(char* _c1s1)
    {
        srs_assert(schema != srs_schema_invalid);
        
        if (schema == srs_schema0) {
            srs_schema0_copy_to(_c1s1, true, time, version, &block0.key, &block1.digest);
        } else {
            srs_schema1_copy_to(_c1s1, true, time, version, &block0.digest, &block1.key);
        }
    }
    
    int c1s1::parse(char* _c1s1, srs_schema_type _schema)
    {
        int ret = ERROR_SUCCESS;
        
        if (_schema == srs_schema_invalid) {
            ret = ERROR_RTMP_CH_SCHEMA;
            srs_error("parse c1 failed. invalid schema=%d, ret=%d", _schema, ret);
            return ret;
        }
        
        destroy_blocks();
        
        
        time = __srs_stream_read_4bytes(_c1s1);
        version = __srs_stream_read_4bytes(_c1s1 + 4); // client c1 version
        
        if (_schema == srs_schema0) {
            if ((ret = srs_key_block_parse(&block0.key, _c1s1 + 8)) != ERROR_SUCCESS) {
                srs_error("parse the c1 key failed. ret=%d", ret);
                return ret;
            }
            if ((ret = srs_digest_block_parse(&block1.digest, _c1s1 + 8 + 764)) != ERROR_SUCCESS) {
                srs_error("parse the c1 digest failed. ret=%d", ret);
                return ret;
            }
            srs_verbose("parse c1 key-digest success");
        } else if (_schema == srs_schema1) {
            if ((ret = srs_digest_block_parse(&block0.digest, _c1s1 + 8)) != ERROR_SUCCESS) {
                srs_error("parse the c1 key failed. ret=%d", ret);
                return ret;
            }
            if ((ret = srs_key_block_parse(&block1.key, _c1s1 + 8 + 764)) != ERROR_SUCCESS) {
                srs_error("parse the c1 digest failed. ret=%d", ret);
                return ret;
            }
            srs_verbose("parse c1 digest-key success");
        } else {
            ret = ERROR_RTMP_CH_SCHEMA;
            srs_error("parse c1 failed. invalid schema=%d, ret=%d", _schema, ret);
            return ret;
        }
        
        schema = _schema;
        
        return ret;
    }
    
    int c1s1::c1_create(srs_schema_type _schema)
    {
        int ret = ERROR_SUCCESS;
        
        if (_schema == srs_schema_invalid) {
            ret = ERROR_RTMP_CH_SCHEMA;
            srs_error("create c1 failed. invalid schema=%d, ret=%d", _schema, ret);
            return ret;
        }
        
        destroy_blocks();
        
        // client c1 time and version
        time = ::time(NULL);
        version = 0x80000702; // client c1 version
        
        // generate signature by schema
        if (_schema == srs_schema0) {
            srs_key_block_init(&block0.key);
            srs_digest_block_init(&block1.digest);
        } else {
            srs_digest_block_init(&block0.digest);
            srs_key_block_init(&block1.key);
        }
        
        schema = _schema;
        
        // generate digest
        char* digest = NULL;
        
        if ((ret = calc_c1_digest(digest)) != ERROR_SUCCESS) {
            srs_error("sign c1 error, failed to calc digest. ret=%d", ret);
            return ret;
        }
        
        srs_assert(digest != NULL);
        SrsAutoFree(char, digest);
        
        if (schema == srs_schema0) {
            memcpy(block1.digest.digest, digest, 32);
        } else {
            memcpy(block0.digest.digest, digest, 32);
        }
        
        return ret;
    }
    
    int c1s1::c1_validate_digest(bool& is_valid)
    {
        is_valid = false;
        int ret = ERROR_SUCCESS;
        
        char* c1_digest = NULL;
        
        if ((ret = calc_c1_digest(c1_digest)) != ERROR_SUCCESS) {
            srs_error("validate c1 error, failed to calc digest. ret=%d", ret);
            return ret;
        }
        
        srs_assert(c1_digest != NULL);
        SrsAutoFree(char, c1_digest);
        
        if (schema == srs_schema0) {
            is_valid = srs_bytes_equals(block1.digest.digest, c1_digest, 32);
        } else {
            is_valid = srs_bytes_equals(block0.digest.digest, c1_digest, 32);
        }
        
        return ret;
    }
    
    int c1s1::s1_validate_digest(bool& is_valid)
    {
        is_valid = false;
        int ret = ERROR_SUCCESS;
        
        char* s1_digest = NULL;
        
        if ((ret = calc_s1_digest(s1_digest)) != ERROR_SUCCESS) {
            srs_error("validate s1 error, failed to calc digest. ret=%d", ret);
            return ret;
        }
        
        srs_assert(s1_digest != NULL);
        SrsAutoFree(char, s1_digest);
        
        if (schema == srs_schema0) {
            is_valid = srs_bytes_equals(block1.digest.digest, s1_digest, 32);
        } else {
            is_valid = srs_bytes_equals(block0.digest.digest, s1_digest, 32);
        }
        
        return ret;
    }
    
    int c1s1::s1_create(c1s1* c1)
    {
        int ret = ERROR_SUCCESS;
        
        if (c1->schema == srs_schema_invalid) {
            ret = ERROR_RTMP_CH_SCHEMA;
            srs_error("create s1 failed. invalid schema=%d, ret=%d", c1->schema, ret);
            return ret;
        }
        
        destroy_blocks();
        schema = c1->schema;
        
        time = ::time(NULL);
        version = 0x01000504; // server s1 version
        
        if (schema == srs_schema0) {
            srs_key_block_init(&block0.key);
            srs_digest_block_init(&block1.digest);
            
            // directly generate the public key.
            // @see: https://github.com/winlinvip/simple-rtmp-server/issues/148
            if ((ret = openssl_generate_key(block0.key.key, 128)) != ERROR_SUCCESS) {
                srs_error("calc s1 key failed. ret=%d", ret);
                return ret;
            }
        } else {
            srs_digest_block_init(&block0.digest);
            srs_key_block_init(&block1.key);
            
            // directly generate the public key.
            // @see: https://github.com/winlinvip/simple-rtmp-server/issues/148
            if ((ret = openssl_generate_key(block1.key.key, 128)) != ERROR_SUCCESS) {
                srs_error("calc s1 key failed. ret=%d", ret);
                return ret;
            }
        }
        srs_verbose("calc s1 key success.");
            
        char* s1_digest = NULL;
        if ((ret = calc_s1_digest(s1_digest))  != ERROR_SUCCESS) {
            srs_error("calc s1 digest failed. ret=%d", ret);
            return ret;
        }
        srs_verbose("calc s1 digest success.");
        
        srs_assert(s1_digest != NULL);
        SrsAutoFree(char, s1_digest);
        
        if (schema == srs_schema0) {
            memcpy(block1.digest.digest, s1_digest, 32);
        } else {
            memcpy(block0.digest.digest, s1_digest, 32);
        }
        srs_verbose("copy s1 key success.");
        
        return ret;
    }
    
    int c1s1::calc_s1_digest(char*& digest)
    {
        int ret = ERROR_SUCCESS;
        
        srs_assert(schema == srs_schema0 || schema == srs_schema1);
        
        char* c1s1_joined_bytes = NULL;
    
        if (schema == srs_schema0) {
            c1s1_joined_bytes = srs_bytes_join_schema0(time, version, &block0.key, &block1.digest);
        } else {
            c1s1_joined_bytes = srs_bytes_join_schema1(time, version, &block0.digest, &block1.key);
        }
        
        srs_assert(c1s1_joined_bytes != NULL);
        SrsAutoFree(char, c1s1_joined_bytes);
        
        digest = new char[__SRS_OpensslHashSize];
        if ((ret = openssl_HMACsha256(SrsGenuineFMSKey, 36, c1s1_joined_bytes, 1536 - 32, digest)) != ERROR_SUCCESS) {
            srs_error("calc digest for s1 failed. ret=%d", ret);
            return ret;
        }
        srs_verbose("digest calculated for s1");
        
        return ret;
    }
    
    int c1s1::calc_c1_digest(char*& digest)
    {
        int ret = ERROR_SUCCESS;
        
        srs_assert(schema == srs_schema0 || schema == srs_schema1);
        
        char* c1s1_joined_bytes = NULL;
    
        if (schema == srs_schema0) {
            c1s1_joined_bytes = srs_bytes_join_schema0(time, version, &block0.key, &block1.digest);
        } else {
            c1s1_joined_bytes = srs_bytes_join_schema1(time, version, &block0.digest, &block1.key);
        }
        
        srs_assert(c1s1_joined_bytes != NULL);
        SrsAutoFree(char, c1s1_joined_bytes);
        
        digest = new char[__SRS_OpensslHashSize];
        if ((ret = openssl_HMACsha256(SrsGenuineFPKey, 30, c1s1_joined_bytes, 1536 - 32, digest)) != ERROR_SUCCESS) {
            srs_error("calc digest for c1 failed. ret=%d", ret);
            return ret;
        }
        srs_verbose("digest calculated for c1");
        
        return ret;
    }
    
    void c1s1::destroy_blocks()
    {
        if (schema == srs_schema_invalid) {
            return;
        }
        
        if (schema == srs_schema0) {
            srs_key_block_free(&block0.key);
            srs_digest_block_free(&block1.digest);
        } else {
            srs_digest_block_free(&block0.digest);
            srs_key_block_free(&block1.key);
        }
    }
}

#endif

SrsSimpleHandshake::SrsSimpleHandshake()
{
}

SrsSimpleHandshake::~SrsSimpleHandshake()
{
}

int SrsSimpleHandshake::handshake_with_client(SrsHandshakeBytes* hs_bytes, ISrsProtocolReaderWriter* io)
{
    int ret = ERROR_SUCCESS;
    
    ssize_t nsize;
    
    if ((ret = hs_bytes->read_c0c1(io)) != ERROR_SUCCESS) {
        return ret;
    }

    // plain text required.
    if (hs_bytes->c0c1[0] != 0x03) {
        ret = ERROR_RTMP_PLAIN_REQUIRED;
        srs_warn("only support rtmp plain text. ret=%d", ret);
        return ret;
    }
    srs_verbose("check c0 success, required plain text.");
    
    if ((ret = hs_bytes->create_s0s1s2(hs_bytes->c0c1 + 1)) != ERROR_SUCCESS) {
        return ret;
    }
    
    if ((ret = io->write(hs_bytes->s0s1s2, 3073, &nsize)) != ERROR_SUCCESS) {
        srs_warn("simple handshake send s0s1s2 failed. ret=%d", ret);
        return ret;
    }
    srs_verbose("simple handshake send s0s1s2 success.");
    
    if ((ret = hs_bytes->read_c2(io)) != ERROR_SUCCESS) {
        return ret;
    }
    
    srs_trace("simple handshake success.");
    
    return ret;
}

int SrsSimpleHandshake::handshake_with_server(SrsHandshakeBytes* hs_bytes, ISrsProtocolReaderWriter* io)
{
    int ret = ERROR_SUCCESS;
    
    ssize_t nsize;
    
    // simple handshake
    if ((ret = hs_bytes->create_c0c1()) != ERROR_SUCCESS) {
        return ret;
    }
    
    if ((ret = io->write(hs_bytes->c0c1, 1537, &nsize)) != ERROR_SUCCESS) {
        srs_warn("write c0c1 failed. ret=%d", ret);
        return ret;
    }
    srs_verbose("write c0c1 success.");
    
    if ((ret = hs_bytes->read_s0s1s2(io)) != ERROR_SUCCESS) {
        return ret;
    }
    
    // plain text required.
    if (hs_bytes->s0s1s2[0] != 0x03) {
        ret = ERROR_RTMP_HANDSHAKE;
        srs_warn("handshake failed, plain text required. ret=%d", ret);
        return ret;
    }
    
    if ((ret = hs_bytes->create_c2()) != ERROR_SUCCESS) {
        return ret;
    }
    if ((ret = io->write(hs_bytes->c2, 1536, &nsize)) != ERROR_SUCCESS) {
        srs_warn("simple handshake write c2 failed. ret=%d", ret);
        return ret;
    }
    srs_verbose("simple handshake write c2 success.");
    
    srs_trace("simple handshake success.");
    
    return ret;
}

SrsComplexHandshake::SrsComplexHandshake()
{
}

SrsComplexHandshake::~SrsComplexHandshake()
{
}

#ifndef SRS_AUTO_SSL
int SrsComplexHandshake::handshake_with_client(SrsHandshakeBytes* /*hs_bytes*/, ISrsProtocolReaderWriter* /*io*/)
{
    srs_trace("directly use simple handshake for ssl disabled.");
    return ERROR_RTMP_TRY_SIMPLE_HS;
}
#else
int SrsComplexHandshake::handshake_with_client(SrsHandshakeBytes* hs_bytes, ISrsProtocolReaderWriter* io)
{
    int ret = ERROR_SUCCESS;

    ssize_t nsize;
    
    if ((ret = hs_bytes->read_c0c1(io)) != ERROR_SUCCESS) {
        return ret;
    }
    
    // decode c1
    c1s1 c1;
    // try schema0.
    if ((ret = c1.parse(hs_bytes->c0c1 + 1, srs_schema0)) != ERROR_SUCCESS) {
        srs_error("parse c1 schema%d error. ret=%d", srs_schema0, ret);
        return ret;
    }
    // try schema1
    bool is_valid = false;
    if ((ret = c1.c1_validate_digest(is_valid)) != ERROR_SUCCESS || !is_valid) {
        if ((ret = c1.parse(hs_bytes->c0c1 + 1, srs_schema1)) != ERROR_SUCCESS) {
            srs_error("parse c1 schema%d error. ret=%d", srs_schema1, ret);
            return ret;
        }
        
        if ((ret = c1.c1_validate_digest(is_valid)) != ERROR_SUCCESS || !is_valid) {
            ret = ERROR_RTMP_TRY_SIMPLE_HS;
            srs_info("all schema valid failed, try simple handshake. ret=%d", ret);
            return ret;
        }
    }
    srs_verbose("decode c1 success.");
    
    // encode s1
    c1s1 s1;
    if ((ret = s1.s1_create(&c1)) != ERROR_SUCCESS) {
        srs_error("create s1 from c1 failed. ret=%d", ret);
        return ret;
    }
    srs_verbose("create s1 from c1 success.");
    // verify s1
    if ((ret = s1.s1_validate_digest(is_valid)) != ERROR_SUCCESS || !is_valid) {
        ret = ERROR_RTMP_TRY_SIMPLE_HS;
        srs_info("verify s1 failed, try simple handshake. ret=%d", ret);
        return ret;
    }
    srs_verbose("verify s1 success.");
    
    c2s2 s2;
    if ((ret = s2.s2_create(&c1)) != ERROR_SUCCESS) {
        srs_error("create s2 from c1 failed. ret=%d", ret);
        return ret;
    }
    srs_verbose("create s2 from c1 success.");
    // verify s2
    if ((ret = s2.s2_validate(&c1, is_valid)) != ERROR_SUCCESS || !is_valid) {
        ret = ERROR_RTMP_TRY_SIMPLE_HS;
        srs_info("verify s2 failed, try simple handshake. ret=%d", ret);
        return ret;
    }
    srs_verbose("verify s2 success.");
    
    // sendout s0s1s2
    if ((ret = hs_bytes->create_s0s1s2()) != ERROR_SUCCESS) {
        return ret;
    }
    s1.dump(hs_bytes->s0s1s2 + 1);
    s2.dump(hs_bytes->s0s1s2 + 1537);
    if ((ret = io->write(hs_bytes->s0s1s2, 3073, &nsize)) != ERROR_SUCCESS) {
        srs_warn("complex handshake send s0s1s2 failed. ret=%d", ret);
        return ret;
    }
    srs_verbose("complex handshake send s0s1s2 success.");
    
    // recv c2
    if ((ret = hs_bytes->read_c2(io)) != ERROR_SUCCESS) {
        return ret;
    }
    c2s2 c2;
    c2.parse(hs_bytes->c2);
    srs_verbose("complex handshake read c2 success.");
    
    // verify c2
    // never verify c2, for ffmpeg will failed.
    // it's ok for flash.
    
    srs_trace("complex handshake success");
    
    return ret;
}
#endif

#ifndef SRS_AUTO_SSL
int SrsComplexHandshake::handshake_with_server(SrsHandshakeBytes* /*hs_bytes*/, ISrsProtocolReaderWriter* /*io*/)
{
    return ERROR_RTMP_TRY_SIMPLE_HS;
}
#else
int SrsComplexHandshake::handshake_with_server(SrsHandshakeBytes* hs_bytes, ISrsProtocolReaderWriter* io)
{
    int ret = ERROR_SUCCESS;
    
    ssize_t nsize;
    
    // complex handshake
    if ((ret = hs_bytes->create_c0c1()) != ERROR_SUCCESS) {
        return ret;
    }
    
    // sign c1
    c1s1 c1;
    // @remark, FMS requires the schema1(digest-key), or connect failed.
    if ((ret = c1.c1_create(srs_schema1)) != ERROR_SUCCESS) {
        return ret;
    }
    c1.dump(hs_bytes->c0c1 + 1);
    // verify c1
    bool is_valid;
    if ((ret = c1.c1_validate_digest(is_valid)) != ERROR_SUCCESS || !is_valid) {
        ret = ERROR_RTMP_TRY_SIMPLE_HS;
        return ret;
    }
    
    if ((ret = io->write(hs_bytes->c0c1, 1537, &nsize)) != ERROR_SUCCESS) {
        srs_warn("write c0c1 failed. ret=%d", ret);
        return ret;
    }
    srs_verbose("write c0c1 success.");
    
    // s0s1s2
    if ((ret = hs_bytes->read_s0s1s2(io)) != ERROR_SUCCESS) {
        return ret;
    }
    
    // plain text required.
    if (hs_bytes->s0s1s2[0] != 0x03) {
        ret = ERROR_RTMP_HANDSHAKE;
        srs_warn("handshake failed, plain text required. ret=%d", ret);
        return ret;
    }
    
    // verify s1s2
    c1s1 s1;
    if ((ret = s1.parse(hs_bytes->s0s1s2 + 1, c1.schema)) != ERROR_SUCCESS) {
        return ret;
    }
    
    // never verify the s1,
    // for if forward to nginx-rtmp, verify s1 will failed,
    // TODO: FIXME: find the handshake schema of nginx-rtmp.
    
    // c2
    if ((ret = hs_bytes->create_c2()) != ERROR_SUCCESS) {
        return ret;
    }
    c2s2 c2;
    if ((ret = c2.c2_create(&s1)) != ERROR_SUCCESS) {
        return ret;
    }
    c2.dump(hs_bytes->c2);
    if ((ret = io->write(hs_bytes->c2, 1536, &nsize)) != ERROR_SUCCESS) {
        srs_warn("complex handshake write c2 failed. ret=%d", ret);
        return ret;
    }
    srs_verbose("complex handshake write c2 success.");
    
    srs_trace("complex handshake success.");
    
    return ret;
}
#endif