Fangjun Kuang
Committed by GitHub

Add Kokoro v1.1-zh (#1942)

... ... @@ -3,7 +3,7 @@ name: export-kokoro-to-onnx
on:
push:
branches:
- export-kokoro
- export-kokoro-2
workflow_dispatch:
... ... @@ -20,7 +20,7 @@ jobs:
fail-fast: false
matrix:
os: [ubuntu-latest]
version: ["0.19", "1.0"]
version: ["0.19", "1.0", "1.1-zh"]
python-version: ["3.10"]
steps:
... ... @@ -34,7 +34,7 @@ jobs:
- name: Install Python dependencies
shell: bash
run: |
pip install "numpy<=1.26.4" onnx==1.16.0 onnxruntime==1.17.1 librosa soundfile piper_phonemize -f https://k2-fsa.github.io/icefall/piper_phonemize.html misaki[en] misaki[zh] torch==2.6.0+cpu -f https://download.pytorch.org/whl/torch
pip install kokoro "numpy<=1.26.4" onnx==1.16.0 onnxruntime==1.17.1 librosa soundfile piper_phonemize -f https://k2-fsa.github.io/icefall/piper_phonemize.html misaki[en] misaki[zh] torch==2.6.0+cpu -f https://download.pytorch.org/whl/torch
- name: Run
shell: bash
... ... @@ -49,9 +49,15 @@ jobs:
elif [[ $v == "1.0" ]]; then
cd v1.0
./run.sh
elif [[ $v == "1.1-zh" ]]; then
cd v1.1-zh
./run.sh
else
echo "Unknown version $v"
exit 1
fi
- name: Collect results ${{ matrix.version }}
- name: Collect results 0.19
if: matrix.version == '0.19'
shell: bash
run: |
... ... @@ -71,7 +77,7 @@ jobs:
ls -lh $d.tar.bz2
- name: Collect results ${{ matrix.version }}
- name: Collect results 1.0
if: matrix.version == '1.0'
shell: bash
run: |
... ... @@ -87,7 +93,7 @@ jobs:
d=kokoro-multi-lang-v1_0
mkdir $d
cp -a LICENSE $d/LICENSE
cp -v LICENSE $d/LICENSE
cp -a espeak-ng-data $d/
cp -v $src/kokoro.onnx $d/model.onnx
cp -v $src/voices.bin $d/
... ... @@ -105,7 +111,63 @@ jobs:
ls -lh $d.tar.bz2
- name: Publish to huggingface ${{ matrix.version }}
- name: Collect results 1.1-zh
if: matrix.version == '1.1-zh'
shell: bash
run: |
curl -SL -O https://github.com/csukuangfj/cppjieba/releases/download/sherpa-onnx-2024-04-19/dict.tar.bz2
tar xvf dict.tar.bz2
rm dict.tar.bz2
curl -SL -o date-zh.fst https://huggingface.co/csukuangfj/icefall-tts-aishell3-vits-low-2024-04-06/resolve/main/data/date.fst
curl -SL -o number-zh.fst https://huggingface.co/csukuangfj/icefall-tts-aishell3-vits-low-2024-04-06/resolve/main/data/number.fst
curl -SL -o phone-zh.fst https://huggingface.co/csukuangfj/icefall-tts-aishell3-vits-low-2024-04-06/resolve/main/data/phone.fst
src=scripts/kokoro/v1.1-zh
d=kokoro-multi-lang-v1_1
mkdir $d
cp -v LICENSE $d/LICENSE
cp -a espeak-ng-data $d/
cp -v $src/kokoro.onnx $d/model.onnx
cp -v $src/voices.bin $d/
cp -v $src/tokens.txt $d/
cp -v $src/lexicon*.txt $d/
cp -v $src/README.md $d/README.md
cp -av dict $d/
cp -v ./*.fst $d/
ls -lh $d/
echo "---"
ls -lh $d/dict
tar cjfv $d.tar.bz2 $d
rm -rf $d
ls -lh $d.tar.bz2
d=kokoro-int8-multi-lang-v1_1
mkdir $d
cp -v LICENSE $d/LICENSE
cp -a espeak-ng-data $d/
cp -v $src/kokoro.int8.onnx $d/model.int8.onnx
cp -v $src/voices.bin $d/
cp -v $src/tokens.txt $d/
cp -v $src/lexicon*.txt $d/
cp -v $src/README.md $d/README.md
cp -av dict $d/
cp -v ./*.fst $d/
ls -lh $d/
echo "---"
ls -lh $d/dict
tar cjfv $d.tar.bz2 $d
rm -rf $d
ls -lh $d.tar.bz2
echo "---"
ls -lh *.tar.bz2
- name: Publish to huggingface 0.19
if: matrix.version == '0.19'
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
... ... @@ -154,7 +216,7 @@ jobs:
git commit -m "add models"
git push https://csukuangfj:$HF_TOKEN@huggingface.co/csukuangfj/kokoro-en-v0_19 main || true
- name: Publish to huggingface ${{ matrix.version }}
- name: Publish to huggingface 1.0
if: matrix.version == '1.0'
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
... ... @@ -205,6 +267,108 @@ jobs:
git commit -m "add models"
git push https://csukuangfj:$HF_TOKEN@huggingface.co/csukuangfj/kokoro-multi-lang-v1_0 main || true
- name: Publish to huggingface 1.1-zh
if: matrix.version == '1.1-zh'
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
uses: nick-fields/retry@v3
with:
max_attempts: 20
timeout_seconds: 200
shell: bash
command: |
git config --global user.email "csukuangfj@gmail.com"
git config --global user.name "Fangjun Kuang"
rm -rf huggingface
export GIT_LFS_SKIP_SMUDGE=1
export GIT_CLONE_PROTECTION_ACTIVE=false
git clone https://csukuangfj:$HF_TOKEN@huggingface.co/csukuangfj/kokoro-multi-lang-v1_1 huggingface
cd huggingface
rm -rf ./*
git fetch
git pull
git lfs track "cmn_dict"
git lfs track "ru_dict"
git lfs track "*.wav"
git lfs track "lexicon*.txt"
cp -a ../espeak-ng-data ./
cp -v ../scripts/kokoro/v1.1-zh/kokoro.onnx ./model.onnx
cp -v ../scripts/kokoro/v1.1-zh/tokens.txt .
cp -v ../scripts/kokoro/v1.1-zh/voices.bin .
cp -v ../scripts/kokoro/v1.1-zh/lexicon*.txt .
cp -v ../scripts/kokoro/v1.1-zh/README.md ./README.md
cp -v ../LICENSE ./
cp -av ../dict ./
cp -v ../*.fst ./
git lfs track "*.onnx"
git add .
ls -lh
git status
git commit -m "add models"
git push https://csukuangfj:$HF_TOKEN@huggingface.co/csukuangfj/kokoro-multi-lang-v1_1 main || true
- name: Publish to huggingface 1.1-zh-int8
if: matrix.version == '1.1-zh'
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
uses: nick-fields/retry@v3
with:
max_attempts: 20
timeout_seconds: 200
shell: bash
command: |
git config --global user.email "csukuangfj@gmail.com"
git config --global user.name "Fangjun Kuang"
rm -rf huggingface
export GIT_LFS_SKIP_SMUDGE=1
export GIT_CLONE_PROTECTION_ACTIVE=false
git clone https://csukuangfj:$HF_TOKEN@huggingface.co/csukuangfj/kokoro-int8-multi-lang-v1_1 huggingface
cd huggingface
rm -rf ./*
git fetch
git pull
git lfs track "cmn_dict"
git lfs track "ru_dict"
git lfs track "*.wav"
git lfs track "lexicon*.txt"
cp -a ../espeak-ng-data ./
cp -v ../scripts/kokoro/v1.1-zh/kokoro.int8.onnx ./model.int8.onnx
cp -v ../scripts/kokoro/v1.1-zh/tokens.txt .
cp -v ../scripts/kokoro/v1.1-zh/voices.bin .
cp -v ../scripts/kokoro/v1.1-zh/lexicon*.txt .
cp -v ../scripts/kokoro/v1.1-zh/README.md ./README.md
cp -v ../LICENSE ./
cp -av ../dict ./
cp -v ../*.fst ./
git lfs track "*.onnx"
git add .
ls -lh
git status
git commit -m "add models"
git push https://csukuangfj:$HF_TOKEN@huggingface.co/csukuangfj/kokoro-int8-multi-lang-v1_1 main || true
- name: Release
if: github.repository_owner == 'csukuangfj'
uses: svenstaro/upload-release-action@v2
... ...
... ... @@ -438,7 +438,17 @@ def get_kokoro_models() -> List[TtsModel]:
model_dir="kokoro-multi-lang-v1_0",
model_name="model.onnx",
lang="en",
)
),
TtsModel(
model_dir="kokoro-multi-lang-v1_1",
model_name="model.onnx",
lang="en",
),
TtsModel(
model_dir="kokoro-int8-multi-lang-v1_1",
model_name="model.int8.onnx",
lang="en",
),
]
for m in multi_lingual_models:
m.data_dir = f"{m.model_dir}/espeak-ng-data"
... ...
voices.json
voices.bin
README-new.md
lexicon-*.txt
config.json
... ...
... ... @@ -2,11 +2,6 @@
# Copyright 2025 Xiaomi Corp. (authors: Fangjun Kuang)
import argparse
import json
from pathlib import Path
import numpy as np
import onnx
import torch
... ...
... ... @@ -4,19 +4,6 @@
import json
from typing import List, Tuple
from misaki import zh
from pypinyin import load_phrases_dict, phrases_dict, pinyin_dict
user_dict = {
"还田": [["huan2"], ["tian2"]],
"行长": [["hang2"], ["zhang3"]],
"银行行长": [["yin2"], ["hang2"], ["hang2"], ["zhang3"]],
}
load_phrases_dict(user_dict)
phrases_dict.phrases_dict.update(**user_dict)
def generate_english_lexicon(kind: str):
assert kind in ("us", "gb"), kind
... ... @@ -59,28 +46,6 @@ def generate_english_lexicon(kind: str):
return list(user_defined_lower.items()) + list(lexicon.items())
def generate_chinese_lexicon():
word_dict = pinyin_dict.pinyin_dict
phrases = phrases_dict.phrases_dict
g2p = zh.ZHG2P()
lexicon = []
for key in word_dict:
if not (0x4E00 <= key <= 0x9FFF):
continue
w = chr(key)
tokens: str = g2p.word2ipa(w)
tokens = tokens.replace(chr(815), "")
lexicon.append((w, tokens))
for key in phrases:
tokens: str = g2p.word2ipa(key)
tokens = tokens.replace(chr(815), "")
lexicon.append((key, tokens))
return lexicon
def save(filename: str, lexicon: List[Tuple[str, str]]):
with open(filename, "w", encoding="utf-8") as f:
for word, phones in lexicon:
... ... @@ -91,11 +56,9 @@ def save(filename: str, lexicon: List[Tuple[str, str]]):
def main():
us = generate_english_lexicon("us")
gb = generate_english_lexicon("gb")
zh = generate_chinese_lexicon()
save("lexicon-us-en.txt", us)
save("lexicon-gb-en.txt", gb)
save("lexicon-zh.txt", zh)
if __name__ == "__main__":
... ...
#!/usr/bin/env python3
# Copyright 2025 Xiaomi Corp. (authors: Fangjun Kuang)
from typing import List, Tuple
from misaki import zh
from pypinyin import load_phrases_dict, phrases_dict, pinyin_dict
user_dict = {
"还田": [["huan2"], ["tian2"]],
"行长": [["hang2"], ["zhang3"]],
"银行行长": [["yin2"], ["hang2"], ["hang2"], ["zhang3"]],
}
load_phrases_dict(user_dict)
phrases_dict.phrases_dict.update(**user_dict)
def generate_chinese_lexicon():
word_dict = pinyin_dict.pinyin_dict
phrases = phrases_dict.phrases_dict
g2p = zh.ZHG2P()
lexicon = []
for key in word_dict:
if not (0x4E00 <= key <= 0x9FFF):
continue
w = chr(key)
tokens: str = g2p.word2ipa(w)
tokens = tokens.replace(chr(815), "")
lexicon.append((w, tokens))
for key in phrases:
tokens: str = g2p.word2ipa(key)
tokens = tokens.replace(chr(815), "")
lexicon.append((key, tokens))
return lexicon
def save(filename: str, lexicon: List[Tuple[str, str]]):
with open(filename, "w", encoding="utf-8") as f:
for word, phones in lexicon:
tokens = " ".join(list(phones))
f.write(f"{word} {tokens}\n")
def main():
zh = generate_chinese_lexicon()
save("lexicon-zh.txt", zh)
if __name__ == "__main__":
main()
... ...
... ... @@ -111,7 +111,11 @@ if [ ! -f ./tokens.txt ]; then
fi
if [ ! -f ./lexicon-zh.txt ]; then
./generate_lexicon.py
./generate_lexicon_zh.py
fi
if [[ ! -f ./lexicon-us-en.txt || ! -f ./lexicon-gb-en.txt ]]; then
./generate_lexicon_en.py
fi
if [ ! -f ./voices.bin ]; then
... ...
... ... @@ -10,8 +10,6 @@ import jieba
import numpy as np
import onnxruntime as ort
import soundfile as sf
import torch
from misaki import zh
try:
from piper_phonemize import phonemize_espeak
... ... @@ -114,7 +112,6 @@ class OnnxModel:
def __call__(self, text: str, voice: str):
punctuations = ';:,.!?-…()"“”'
text = text.lower()
g2p = zh.ZHG2P()
tokens = ""
... ...
# Introduction
This directory is for kokoro v1.1-zh.
See also https://huggingface.co/hexgrad/Kokoro-82M-v1.1-zh
... ...
#!/usr/bin/env python3
# Copyright 2025 Xiaomi Corp. (authors: Fangjun Kuang)
import onnx
import torch
from generate_voices_bin import speaker2id
def main():
model = onnx.load("./kokoro.onnx")
style = torch.load("./voices/zf_001.pt", weights_only=True, map_location="cpu")
id2speaker_str = ""
speaker2id_str = ""
sep = ""
for s, i in speaker2id.items():
speaker2id_str += f"{sep}{s}->{i}"
id2speaker_str += f"{sep}{i}->{s}"
sep = ","
meta_data = {
"model_type": "kokoro",
"language": "multi-lang, e.g., English, Chinese",
"has_espeak": 1,
"sample_rate": 24000,
"version": 2,
"voice": "en-us",
"style_dim": ",".join(map(str, style.shape)),
"n_speakers": len(speaker2id),
"id2speaker": id2speaker_str,
"speaker2id": speaker2id_str,
"speaker_names": ",".join(map(str, speaker2id.keys())),
"model_url": "https://huggingface.co/hexgrad/Kokoro-82M-v1.1-zh",
"maintainer": "k2-fsa",
"comment": "This is Kokoro v1.1-zh, a multilingual TTS model, supporting English, Chinese.",
}
print(model.metadata_props)
while len(model.metadata_props):
model.metadata_props.pop()
for key, value in meta_data.items():
meta = model.metadata_props.add()
meta.key = key
meta.value = str(value)
print("--------------------")
print(model.metadata_props)
onnx.save(model, "./kokoro.onnx")
if __name__ == "__main__":
main()
... ...
#!/usr/bin/env python3
import argparse
import onnxruntime
from onnxruntime.quantization import QuantType, quantize_dynamic
def show(filename):
session_opts = onnxruntime.SessionOptions()
session_opts.log_severity_level = 3
sess = onnxruntime.InferenceSession(filename, session_opts)
for i in sess.get_inputs():
print(i)
print("-----")
for i in sess.get_outputs():
print(i)
"""
NodeArg(name='tokens', type='tensor(int64)', shape=[1, 'sequence_length'])
NodeArg(name='style', type='tensor(float)', shape=[1, 256])
NodeArg(name='speed', type='tensor(float)', shape=[1])
-----
NodeArg(name='audio', type='tensor(float)', shape=['audio_length'])
"""
def main():
show("./kokoro.onnx")
quantize_dynamic(
model_input="kokoro.onnx",
model_output="kokoro.int8.onnx",
# op_types_to_quantize=["MatMul"],
weight_type=QuantType.QUInt8,
)
if __name__ == "__main__":
main()
... ...
#!/usr/bin/env python3
import json
import torch
from kokoro import KModel
from kokoro.model import KModelForONNX
@torch.no_grad()
def main():
with open("config.json") as f:
config = json.load(f)
model = (
KModel(
repo_id="not-used-any-value-is-ok",
model="kokoro-v1_1-zh.pth",
config=config,
disable_complex=True,
)
.to("cpu")
.eval()
)
x = torch.randint(1, 100, (48,)).numpy()
x = torch.LongTensor([[0, *x, 0]])
style = torch.rand(1, 256, dtype=torch.float32)
speed = torch.rand(1)
print(x.shape, x.dtype)
print(style.shape, style.dtype)
print(speed, speed.dtype)
model2 = KModelForONNX(model)
torch.onnx.export(
model2,
(x, style, speed),
"kokoro.onnx",
input_names=["tokens", "style", "speed"],
output_names=["audio"],
dynamic_axes={
"tokens": {1: "sequence_length"},
"audio": {0: "audio_length"},
},
opset_version=14, # minimum working version for this kokoro model is 14
)
if __name__ == "__main__":
main()
... ...
../v1.0/generate_lexicon_en.py
\ No newline at end of file
... ...
#!/usr/bin/env python3
# Copyright 2025 Xiaomi Corp. (authors: Fangjun Kuang)
import re
from typing import List, Tuple
from misaki import zh
from misaki.token import MToken
from misaki.zh_frontend import ZH_MAP
from pypinyin import load_phrases_dict, phrases_dict, pinyin_dict
user_dict = {
"还田": [["huan2"], ["tian2"]],
"行长": [["hang2"], ["zhang3"]],
"银行行长": [["yin2"], ["hang2"], ["hang2"], ["zhang3"]],
}
load_phrases_dict(user_dict)
phrases_dict.phrases_dict.update(**user_dict)
def process_text(self, text, with_erhua=True):
"""
This function is modified from
https://github.com/hexgrad/misaki/blob/main/misaki/zh_frontend.py#L155
Note that we have removed jieba.posseg.lcut().
"""
seg_cut = [(text, "v")]
seg_cut = self.tone_modifier.pre_merge_for_modify(seg_cut)
tokens = []
seg_cut = self.tone_modifier.pre_merge_for_modify(seg_cut)
initials = []
finals = []
# pypinyin, g2pM
for word, pos in seg_cut:
if pos == "x" and "\u4E00" <= min(word) and max(word) <= "\u9FFF":
pos = "X"
elif pos != "x" and word in self.punc:
pos = "x"
tk = MToken(text=word, tag=pos, whitespace="")
if pos in ("x", "eng"):
if not word.isspace():
if pos == "x" and word in self.punc:
tk.phonemes = word
tokens.append(tk)
elif tokens:
tokens[-1].whitespace += word
continue
elif (
tokens and tokens[-1].tag not in ("x", "eng") and not tokens[-1].whitespace
):
tokens[-1].whitespace = "/"
# g2p
sub_initials, sub_finals = self._get_initials_finals(word)
# tone sandhi
sub_finals = self.tone_modifier.modified_tone(word, pos, sub_finals)
# er hua
if with_erhua:
sub_initials, sub_finals = self._merge_erhua(
sub_initials, sub_finals, word, pos
)
initials.append(sub_initials)
finals.append(sub_finals)
# assert len(sub_initials) == len(sub_finals) == len(word)
# sum(iterable[, start])
# initials = sum(initials, [])
# finals = sum(finals, [])
phones = []
for c, v in zip(sub_initials, sub_finals):
# NOTE: post process for pypinyin outputs
# we discriminate i, ii and iii
if c:
phones.append(c)
# replace punctuation by ` `
# if c and c in self.punc:
# phones.append(c)
if v and (v not in self.punc or v != c): # and v not in self.rhy_phns:
phones.append(v)
phones = "_".join(phones).replace("_eR", "_er").replace("R", "_R")
phones = re.sub(r"(?=\d)", "_", phones).split("_")
tk.phonemes = "".join(ZH_MAP.get(p, self.unk) for p in phones)
tokens.append(tk)
result = "".join(
(self.unk if tk.phonemes is None else tk.phonemes) + tk.whitespace
for tk in tokens
)
return result, tokens
def generate_chinese_lexicon():
word_dict = pinyin_dict.pinyin_dict
phrases = phrases_dict.phrases_dict
g2p = zh.ZHG2P(version="1.1")
lexicon = []
for key in word_dict:
if not (0x4E00 <= key <= 0x9FFF):
continue
w = chr(key)
tokens: str = process_text(g2p.frontend, w)[0]
lexicon.append((w, tokens))
for key in phrases:
tokens: str = process_text(g2p.frontend, key)[0]
lexicon.append((key, tokens))
return lexicon
def save(filename: str, lexicon: List[Tuple[str, str]]):
with open(filename, "w", encoding="utf-8") as f:
for word, phones in lexicon:
tokens = " ".join(list(phones))
f.write(f"{word} {tokens}\n")
def main():
zh = generate_chinese_lexicon()
save("lexicon-zh.txt", zh)
if __name__ == "__main__":
main()
... ...
../v1.0/generate_tokens.py
\ No newline at end of file
... ...
#!/usr/bin/env python3
# Copyright 2025 Xiaomi Corp. (authors: Fangjun Kuang)
import torch
from pathlib import Path
speakers = [
"af_maple",
"af_sol",
"bf_vale",
]
for i in range(1, 99 + 1):
name = "zf_{:03d}".format(i)
if Path(f"voices/{name}.pt").is_file():
speakers.append(name)
for i in range(9, 100 + 1):
name = "zm_{:03d}".format(i)
if Path(f"voices/{name}.pt").is_file():
speakers.append(name)
id2speaker = {index: value for index, value in enumerate(speakers)}
speaker2id = {speaker: idx for idx, speaker in id2speaker.items()}
def main():
if Path("./voices.bin").is_file():
print("./voices.bin exists - skip")
return
with open("voices.bin", "wb") as f:
for _, speaker in id2speaker.items():
m = torch.load(
f"voices/{speaker}.pt",
weights_only=True,
map_location="cpu",
).numpy()
# m.shape (510, 1, 256)
f.write(m.tobytes())
if __name__ == "__main__":
main()
... ...
#!/usr/bin/env bash
# Copyright 2025 Xiaomi Corp. (authors: Fangjun Kuang)
#
set -ex
if [ ! -f kokoro-v1_1-zh.pth ]; then
curl -SL -O https://huggingface.co/hexgrad/Kokoro-82M-v1.1-zh/resolve/main/kokoro-v1_1-zh.pth
fi
if [ ! -f config.json ]; then
# see https://huggingface.co/hexgrad/Kokoro-82M/blob/main/config.json
curl -SL -O https://huggingface.co/hexgrad/Kokoro-82M-v1.1-zh/resolve/main/config.json
fi
voices=(
af_maple
af_sol
bf_vale
)
# zf_001-zf_099
for i in $(seq 1 99); do
a=$(printf "zf_%03d" $i)
voices+=($a)
done
# zm_009-zm_100
for i in $(seq 9 100); do
a=$(printf "zm_%03d" $i)
voices+=($a)
done
echo ${voices[@]} # all elements
echo ${#voices[@]} # length
mkdir -p voices
for v in ${voices[@]}; do
if [ ! -f voices/$v.pt ]; then
curl -SL --output voices/$v.pt https://huggingface.co/hexgrad/Kokoro-82M-v1.1-zh/resolve/main/voices/$v.pt
fi
done
pushd voices
find . -type f -size -10k -exec rm -v {} +
ls -lh
du -h -d1 .
popd
if [ ! -f ./kokoro.onnx ]; then
python3 ./export_onnx.py
fi
if [ ! -f ./.add-meta-data.done ]; then
python3 ./add_meta_data.py
touch ./.add-meta-data.done
fi
if [ ! -f ./kokoro.int8.onnx ]; then
python3 ./dynamic_quantization.py
fi
if [ ! -f us_gold.json ]; then
curl -SL -O https://raw.githubusercontent.com/hexgrad/misaki/refs/heads/main/misaki/data/us_gold.json
fi
if [ ! -f us_silver.json ]; then
curl -SL -O https://raw.githubusercontent.com/hexgrad/misaki/refs/heads/main/misaki/data/us_silver.json
fi
if [ ! -f gb_gold.json ]; then
curl -SL -O https://raw.githubusercontent.com/hexgrad/misaki/refs/heads/main/misaki/data/gb_gold.json
fi
if [ ! -f gb_silver.json ]; then
curl -SL -O https://raw.githubusercontent.com/hexgrad/misaki/refs/heads/main/misaki/data/gb_silver.json
fi
if [ ! -f ./tokens.txt ]; then
./generate_tokens.py
fi
if [ ! -f ./lexicon-zh.txt ]; then
./generate_lexicon_zh.py
fi
if [[ ! -f ./lexicon-us-en.txt || ! -f ./lexicon-gb-en.txt ]]; then
./generate_lexicon_en.py
fi
if [ ! -f ./voices.bin ]; then
./generate_voices_bin.py
fi
./test.py
ls -lh
... ...
#!/usr/bin/env python3
# Copyright 2025 Xiaomi Corp. (authors: Fangjun Kuang)
import re
import time
from typing import Dict, List
import jieba
import numpy as np
import onnxruntime as ort
import soundfile as sf
try:
from piper_phonemize import phonemize_espeak
except Exception as ex:
raise RuntimeError(
f"{ex}\nPlease run\n"
"pip install piper_phonemize -f https://k2-fsa.github.io/icefall/piper_phonemize.html"
)
def show(filename):
session_opts = ort.SessionOptions()
session_opts.log_severity_level = 3
sess = ort.InferenceSession(filename, session_opts)
for i in sess.get_inputs():
print(i)
print("-----")
for i in sess.get_outputs():
print(i)
"""
NodeArg(name='tokens', type='tensor(int64)', shape=[1, 'sequence_length'])
NodeArg(name='style', type='tensor(float)', shape=[1, 256])
NodeArg(name='speed', type='tensor(float)', shape=[1])
-----
NodeArg(name='audio', type='tensor(float)', shape=['audio_length'])
"""
def load_voices(speaker_names: List[str], dim: List[int], voices_bin: str):
embedding = (
np.fromfile(voices_bin, dtype="uint8")
.view(np.float32)
.reshape(len(speaker_names), *dim)
)
print("embedding.shape", embedding.shape)
ans = dict()
for i in range(len(speaker_names)):
ans[speaker_names[i]] = embedding[i]
return ans
def load_tokens(filename: str) -> Dict[str, int]:
ans = dict()
with open(filename, encoding="utf-8") as f:
for line in f:
fields = line.strip().split()
if len(fields) == 2:
token, idx = fields
ans[token] = int(idx)
else:
assert len(fields) == 1, (len(fields), line)
ans[" "] = int(fields[0])
return ans
def load_lexicon(filename: str) -> Dict[str, List[str]]:
ans = dict()
for lexicon in filename.split(","):
print(lexicon)
with open(lexicon, encoding="utf-8") as f:
for line in f:
w, tokens = line.strip().split(" ", maxsplit=1)
ans[w] = "".join(tokens.split())
return ans
class OnnxModel:
def __init__(self, model_filename: str, tokens: str, lexicon: str, voices_bin: str):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 3
session_opts.intra_op_num_threads = 3
self.session_opts = session_opts
self.model = ort.InferenceSession(
model_filename,
sess_options=self.session_opts,
providers=["CPUExecutionProvider"],
)
self.token2id = load_tokens(tokens)
self.word2tokens = load_lexicon(lexicon)
meta = self.model.get_modelmeta().custom_metadata_map
print(meta)
dim = list(map(int, meta["style_dim"].split(",")))
speaker_names = meta["speaker_names"].split(",")
self.voices = load_voices(
speaker_names=speaker_names, dim=dim, voices_bin=voices_bin
)
self.sample_rate = int(meta["sample_rate"])
print(list(self.voices.keys()))
self.sample_rate = 24000
self.max_len = self.voices[next(iter(self.voices))].shape[0] - 1
def __call__(self, text: str, voice: str):
punctuations = ';:,.!?-…()"“”'
text = text.lower()
tokens = ""
for t in re.findall("[\u4E00-\u9FFF]+|[\u0000-\u007f]+", text):
if ord(t[0]) < 0x7F:
for w in t.split():
while w:
if w[0] in punctuations:
tokens += w[0] + " "
w = w[1:]
continue
if w[-1] in punctuations:
if w[:-1] in self.word2tokens:
tokens += self.word2tokens[w[:-1]]
tokens += w[-1]
else:
if w in self.word2tokens:
tokens += self.word2tokens[w]
else:
print(f"Use espeak-ng for word {w}")
tokens += "".join(phonemize_espeak(w, "en-us")[0])
tokens += " "
break
else:
# Chinese
for w in jieba.cut(t):
if w in self.word2tokens:
tokens += self.word2tokens[w]
else:
for i in w:
if i in self.word2tokens:
tokens += self.word2tokens[i]
else:
print(f"skip {i}")
token_ids = [self.token2id[i] for i in tokens]
token_ids = token_ids[: self.max_len]
style = self.voices[voice][len(token_ids)]
token_ids = [0, *token_ids, 0]
token_ids = np.array([token_ids], dtype=np.int64)
speed = np.array([1.0], dtype=np.float32)
audio = self.model.run(
[
self.model.get_outputs()[0].name,
],
{
self.model.get_inputs()[0].name: token_ids,
self.model.get_inputs()[1].name: style,
self.model.get_inputs()[2].name: speed,
},
)[0]
return audio
def main():
m = OnnxModel(
model_filename="./kokoro.onnx",
tokens="./tokens.txt",
lexicon="./lexicon-us-en.txt,./lexicon-zh.txt",
voices_bin="./voices.bin",
)
text = "来听一听, 这个是什么口音? How are you doing? Are you ok? Thank you! 你觉得中英文说得如何呢?"
text = text.lower()
voice = "zf_001"
start = time.time()
audio = m(text, voice=voice)
end = time.time()
elapsed_seconds = end - start
audio_duration = len(audio) / m.sample_rate
real_time_factor = elapsed_seconds / audio_duration
filename = f"kokoro_v1.1_{voice}_zh_en.wav"
sf.write(
filename,
audio,
samplerate=m.sample_rate,
subtype="PCM_16",
)
print(f" Saved to {filename}")
print(f" Elapsed seconds: {elapsed_seconds:.3f}")
print(f" Audio duration in seconds: {audio_duration:.3f}")
print(f" RTF: {elapsed_seconds:.3f}/{audio_duration:.3f} = {real_time_factor:.3f}")
if __name__ == "__main__":
main()
... ...
... ... @@ -128,15 +128,19 @@ class KokoroMultiLangLexicon::Impl {
}
for (const auto &ids : ids_vec) {
if (ids.size() > 4) {
if (ids.size() > 10 + 2) {
ans.emplace_back(ids);
} else {
if (ans.empty()) {
ans.emplace_back(ids);
} else {
if (ans.back().tokens.size() + ids.size() < 50) {
ans.back().tokens.back() = ids[1];
ans.back().tokens.insert(ans.back().tokens.end(), ids.begin() + 2,
ids.end());
} else {
ans.emplace_back(ids);
}
}
}
}
... ...
... ... @@ -33,8 +33,8 @@ GeneratedAudio GeneratedAudio::ScaleSilence(float scale) const {
if (scale == 1) {
return *this;
}
// if the interval is larger than 0.6 second, then we assume it is a pause
int32_t threshold = static_cast<int32_t>(sample_rate * 0.6);
// if the interval is larger than 0.2 second, then we assume it is a pause
int32_t threshold = static_cast<int32_t>(sample_rate * 0.2);
std::vector<SilenceInterval> intervals;
int32_t num_samples = static_cast<int32_t>(samples.size());
... ...