Fangjun Kuang
Committed by GitHub

Add Python ASR examples with alsa (#646)

... ... @@ -146,6 +146,7 @@ include(CheckIncludeFileCXX)
if(UNIX AND NOT APPLE AND NOT SHERPA_ONNX_ENABLE_WASM AND NOT CMAKE_SYSTEM_NAME STREQUAL Android)
check_include_file_cxx(alsa/asoundlib.h SHERPA_ONNX_HAS_ALSA)
if(SHERPA_ONNX_HAS_ALSA)
message(STATUS "With Alsa")
add_definitions(-DSHERPA_ONNX_ENABLE_ALSA=1)
else()
message(WARNING "\
... ...
#!/usr/bin/env python3
# Real-time speech recognition from a microphone with sherpa-onnx Python API
# with endpoint detection.
#
# Note: This script uses ALSA and works only on Linux systems, especially
# for embedding Linux systems and for running Linux on Windows using WSL.
#
# Please refer to
# https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
# to download pre-trained models
import argparse
import sys
from pathlib import Path
import sherpa_onnx
def assert_file_exists(filename: str):
assert Path(filename).is_file(), (
f"{filename} does not exist!\n"
"Please refer to "
"https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html to download it"
)
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--tokens",
type=str,
required=True,
help="Path to tokens.txt",
)
parser.add_argument(
"--encoder",
type=str,
required=True,
help="Path to the encoder model",
)
parser.add_argument(
"--decoder",
type=str,
required=True,
help="Path to the decoder model",
)
parser.add_argument(
"--joiner",
type=str,
required=True,
help="Path to the joiner model",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="Valid values are greedy_search and modified_beam_search",
)
parser.add_argument(
"--provider",
type=str,
default="cpu",
help="Valid values: cpu, cuda, coreml",
)
parser.add_argument(
"--hotwords-file",
type=str,
default="",
help="""
The file containing hotwords, one words/phrases per line, and for each
phrase the bpe/cjkchar are separated by a space. For example:
▁HE LL O ▁WORLD
你 好 世 界
""",
)
parser.add_argument(
"--hotwords-score",
type=float,
default=1.5,
help="""
The hotword score of each token for biasing word/phrase. Used only if
--hotwords-file is given.
""",
)
parser.add_argument(
"--blank-penalty",
type=float,
default=0.0,
help="""
The penalty applied on blank symbol during decoding.
Note: It is a positive value that would be applied to logits like
this `logits[:, 0] -= blank_penalty` (suppose logits.shape is
[batch_size, vocab] and blank id is 0).
""",
)
parser.add_argument(
"--device-name",
type=str,
required=True,
help="""
The device name specifies which microphone to use in case there are several
on your system. You can use
arecord -l
to find all available microphones on your computer. For instance, if it outputs
**** List of CAPTURE Hardware Devices ****
card 3: UACDemoV10 [UACDemoV1.0], device 0: USB Audio [USB Audio]
Subdevices: 1/1
Subdevice #0: subdevice #0
and if you want to select card 3 and the device 0 on that card, please use:
plughw:3,0
as the device_name.
""",
)
return parser.parse_args()
def create_recognizer(args):
assert_file_exists(args.encoder)
assert_file_exists(args.decoder)
assert_file_exists(args.joiner)
assert_file_exists(args.tokens)
# Please replace the model files if needed.
# See https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
# for download links.
recognizer = sherpa_onnx.OnlineRecognizer.from_transducer(
tokens=args.tokens,
encoder=args.encoder,
decoder=args.decoder,
joiner=args.joiner,
num_threads=1,
sample_rate=16000,
feature_dim=80,
enable_endpoint_detection=True,
rule1_min_trailing_silence=2.4,
rule2_min_trailing_silence=1.2,
rule3_min_utterance_length=300, # it essentially disables this rule
decoding_method=args.decoding_method,
provider=args.provider,
hotwords_file=args.hotwords_file,
hotwords_score=args.hotwords_score,
blank_penalty=args.blank_penalty,
)
return recognizer
def main():
args = get_args()
device_name = args.device_name
print(f"device_name: {device_name}")
alsa = sherpa_onnx.Alsa(device_name)
print("Creating recognizer")
recognizer = create_recognizer(args)
print("Started! Please speak")
sample_rate = 16000
samples_per_read = int(0.1 * sample_rate) # 0.1 second = 100 ms
stream = recognizer.create_stream()
last_result = ""
segment_id = 0
while True:
samples = alsa.read(samples_per_read) # a blocking read
stream.accept_waveform(sample_rate, samples)
while recognizer.is_ready(stream):
recognizer.decode_stream(stream)
is_endpoint = recognizer.is_endpoint(stream)
result = recognizer.get_result(stream)
if result and (last_result != result):
last_result = result
print("\r{}:{}".format(segment_id, result), end="", flush=True)
if is_endpoint:
if result:
print("\r{}:{}".format(segment_id, result), flush=True)
segment_id += 1
recognizer.reset(stream)
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
print("\nCaught Ctrl + C. Exiting")
... ...
... ... @@ -16,7 +16,7 @@
#endif
#if __ANDROID_API__ >= 27
#include "nnapi_provider_factory.h"
#include "nnapi_provider_factory.h" // NOLINT
#endif
namespace sherpa_onnx {
... ...
... ... @@ -276,7 +276,7 @@ as the device_name.
}
}
using namespace std::chrono_literals;
using namespace std::chrono_literals; // NOLINT
std::this_thread::sleep_for(20ms); // sleep for 20ms
}
... ...
... ... @@ -192,7 +192,7 @@ as the device_name.
}
}
using namespace std::chrono_literals;
using namespace std::chrono_literals; // NOLINT
std::this_thread::sleep_for(20ms); // sleep for 20ms
}
t.join();
... ...
... ... @@ -53,10 +53,6 @@ card 3: UACDemoV10 [UACDemoV1.0], device 0: USB Audio [USB Audio]
and if you want to select card 3 and the device 0 on that card, please use:
hw:3,0
or
plughw:3,0
as the device_name.
... ...
include_directories(${CMAKE_SOURCE_DIR})
pybind11_add_module(_sherpa_onnx
set(srcs
circular-buffer.cc
display.cc
endpoint.cc
... ... @@ -37,6 +37,13 @@ pybind11_add_module(_sherpa_onnx
vad-model.cc
voice-activity-detector.cc
)
if(SHERPA_ONNX_HAS_ALSA)
list(APPEND srcs ${CMAKE_SOURCE_DIR}/sherpa-onnx/csrc/alsa.cc alsa.cc)
else()
list(APPEND srcs faked-alsa.cc)
endif()
pybind11_add_module(_sherpa_onnx ${srcs})
if(APPLE)
execute_process(
... ... @@ -54,6 +61,14 @@ endif()
target_link_libraries(_sherpa_onnx PRIVATE sherpa-onnx-core)
if(SHERPA_ONNX_HAS_ALSA)
if(DEFINED ENV{SHERPA_ONNX_ALSA_LIB_DIR})
target_link_libraries(_sherpa_onnx PRIVATE -L$ENV{SHERPA_ONNX_ALSA_LIB_DIR} -lasound)
else()
target_link_libraries(_sherpa_onnx PRIVATE asound)
endif()
endif()
install(TARGETS _sherpa_onnx
DESTINATION ../
)
... ...
// sherpa-onnx/python/csrc/alsa.cc
//
// Copyright (c) 2024 Xiaomi Corporation
#include "sherpa-onnx/python/csrc/alsa.h"
#include <vector>
#include "sherpa-onnx/csrc/alsa.h"
namespace sherpa_onnx {
void PybindAlsa(py::module *m) {
using PyClass = Alsa;
py::class_<PyClass>(*m, "Alsa")
.def(py::init<const char *>(), py::arg("device_name"),
py::call_guard<py::gil_scoped_release>())
.def(
"read",
[](PyClass &self, int32_t num_samples) -> std::vector<float> {
return self.Read(num_samples);
},
py::arg("num_samples"), py::call_guard<py::gil_scoped_release>())
.def_property_readonly("expected_sample_rate",
&PyClass::GetExpectedSampleRate)
.def_property_readonly("actual_sample_rate",
&PyClass::GetActualSampleRate);
}
} // namespace sherpa_onnx
... ...
// sherpa-onnx/python/csrc/alsa.h
//
// Copyright (c) 2024 Xiaomi Corporation
#ifndef SHERPA_ONNX_PYTHON_CSRC_ALSA_H_
#define SHERPA_ONNX_PYTHON_CSRC_ALSA_H_
#include "sherpa-onnx/python/csrc/sherpa-onnx.h"
namespace sherpa_onnx {
void PybindAlsa(py::module *m);
} // namespace sherpa_onnx
#endif // SHERPA_ONNX_PYTHON_CSRC_ALSA_H_
... ...
// sherpa-onnx/python/csrc/faked-alsa.cc
//
// Copyright (c) 2024 Xiaomi Corporation
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/python/csrc/alsa.h"
namespace sherpa_onnx {
class FakedAlsa {
public:
explicit FakedAlsa(const char *) {
SHERPA_ONNX_LOGE("This function is for Linux only.");
#if (SHERPA_ONNX_ENABLE_ALSA == 0) && (defined(__unix__) || defined(__unix))
SHERPA_ONNX_LOGE(R"doc(
sherpa-onnx is compiled without alsa support. To enable that, please run
(1) sudo apt-get install alsa-utils libasound2-dev
(2) rebuild sherpa-onnx
)doc");
#endif
exit(-1);
}
std::vector<float> Read(int32_t) const { return {}; }
int32_t GetExpectedSampleRate() const { return -1; }
int32_t GetActualSampleRate() const { return -1; }
};
void PybindAlsa(py::module *m) {
using PyClass = FakedAlsa;
py::class_<PyClass>(*m, "Alsa")
.def(py::init<const char *>(), py::arg("device_name"))
.def(
"read",
[](PyClass &self, int32_t num_samples) -> std::vector<float> {
return self.Read(num_samples);
},
py::arg("num_samples"), py::call_guard<py::gil_scoped_release>())
.def_property_readonly("expected_sample_rate",
&PyClass::GetExpectedSampleRate)
.def_property_readonly("actual_sample_rate",
&PyClass::GetActualSampleRate);
}
} // namespace sherpa_onnx
#endif // SHERPA_ONNX_PYTHON_CSRC_FAKED_ALSA_H_
... ...
... ... @@ -4,6 +4,7 @@
#include "sherpa-onnx/python/csrc/sherpa-onnx.h"
#include "sherpa-onnx/python/csrc/alsa.h"
#include "sherpa-onnx/python/csrc/circular-buffer.h"
#include "sherpa-onnx/python/csrc/display.h"
#include "sherpa-onnx/python/csrc/endpoint.h"
... ... @@ -54,6 +55,8 @@ PYBIND11_MODULE(_sherpa_onnx, m) {
PybindOfflineTts(&m);
PybindSpeakerEmbeddingExtractor(&m);
PybindSpeakerEmbeddingManager(&m);
PybindAlsa(&m);
}
} // namespace sherpa_onnx
... ...
from _sherpa_onnx import (
Alsa,
CircularBuffer,
Display,
OfflineStream,
... ...