Fangjun Kuang
Committed by GitHub

Add microphone support for offline recognizer (#104)

... ... @@ -107,6 +107,11 @@ if(SHERPA_ONNX_ENABLE_PORTAUDIO)
microphone.cc
)
add_executable(sherpa-onnx-microphone-offline
sherpa-onnx-microphone-offline.cc
microphone.cc
)
if(BUILD_SHARED_LIBS)
set(PA_LIB portaudio)
else()
... ... @@ -114,8 +119,15 @@ if(SHERPA_ONNX_ENABLE_PORTAUDIO)
endif()
target_link_libraries(sherpa-onnx-microphone PRIVATE ${PA_LIB} sherpa-onnx-core)
target_link_libraries(sherpa-onnx-microphone-offline PRIVATE ${PA_LIB} sherpa-onnx-core)
install(TARGETS sherpa-onnx-microphone DESTINATION bin)
install(
TARGETS
sherpa-onnx-microphone
sherpa-onnx-microphone-offline
DESTINATION
bin
)
endif()
if(SHERPA_ONNX_ENABLE_WEBSOCKET)
... ...
// sherpa-onnx/csrc/sherpa-onnx-microphone-offline.cc
//
// Copyright (c) 2022-2023 Xiaomi Corporation
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <cctype> // std::tolower
#include <thread> // NOLINT
#include "portaudio.h" // NOLINT
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/microphone.h"
#include "sherpa-onnx/csrc/offline-recognizer.h"
enum class State {
kIdle,
kRecording,
kDecoding,
};
State state = State::kIdle;
// true to stop the program and exit
bool stop = false;
std::vector<float> samples;
std::mutex samples_mutex;
static void DetectKeyPress() {
SHERPA_ONNX_LOGE("Press Enter to start");
int32_t key;
while (!stop && (key = getchar())) {
if (key != 0x0a) {
continue;
}
switch (state) {
case State::kIdle:
SHERPA_ONNX_LOGE("Start recording. Press Enter to stop recording");
state = State::kRecording;
{
std::lock_guard<std::mutex> lock(samples_mutex);
samples.clear();
}
break;
case State::kRecording:
SHERPA_ONNX_LOGE("Stop recording. Decoding ...");
state = State::kDecoding;
break;
case State::kDecoding:
break;
}
}
}
static int32_t RecordCallback(const void *input_buffer,
void * /*output_buffer*/,
unsigned long frames_per_buffer, // NOLINT
const PaStreamCallbackTimeInfo * /*time_info*/,
PaStreamCallbackFlags /*status_flags*/,
void *user_data) {
std::lock_guard<std::mutex> lock(samples_mutex);
auto p = reinterpret_cast<const float *>(input_buffer);
samples.insert(samples.end(), p, p + frames_per_buffer);
return stop ? paComplete : paContinue;
}
static void Handler(int32_t sig) {
stop = true;
fprintf(stderr, "\nCaught Ctrl + C. Press Enter to exit\n");
}
int32_t main(int32_t argc, char *argv[]) {
signal(SIGINT, Handler);
const char *kUsageMessage = R"usage(
This program uses non-streaming models with microphone for speech recognition.
Usage:
(1) Transducer from icefall
./bin/sherpa-onnx-microphone-offline \
--tokens=/path/to/tokens.txt \
--encoder=/path/to/encoder.onnx \
--decoder=/path/to/decoder.onnx \
--joiner=/path/to/joiner.onnx \
--num-threads=2 \
--decoding-method=greedy_search
(2) Paraformer from FunASR
./bin/sherpa-onnx-microphone-offline \
--tokens=/path/to/tokens.txt \
--paraformer=/path/to/model.onnx \
--num-threads=2 \
--decoding-method=greedy_search
Default value for num_threads is 2.
Valid values for decoding_method: greedy_search.
Please refer to
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
for a list of pre-trained models to download.
)usage";
sherpa_onnx::ParseOptions po(kUsageMessage);
sherpa_onnx::OfflineRecognizerConfig config;
config.Register(&po);
po.Read(argc, argv);
if (po.NumArgs() != 0) {
po.PrintUsage();
exit(EXIT_FAILURE);
}
fprintf(stderr, "%s\n", config.ToString().c_str());
if (!config.Validate()) {
fprintf(stderr, "Errors in config!\n");
return -1;
}
SHERPA_ONNX_LOGE("Creating recognizer ...");
sherpa_onnx::OfflineRecognizer recognizer(config);
SHERPA_ONNX_LOGE("Recognizer created!");
sherpa_onnx::Microphone mic;
PaDeviceIndex num_devices = Pa_GetDeviceCount();
fprintf(stderr, "Num devices: %d\n", num_devices);
PaStreamParameters param;
param.device = Pa_GetDefaultInputDevice();
if (param.device == paNoDevice) {
fprintf(stderr, "No default input device found\n");
exit(EXIT_FAILURE);
}
fprintf(stderr, "Use default device: %d\n", param.device);
const PaDeviceInfo *info = Pa_GetDeviceInfo(param.device);
fprintf(stderr, " Name: %s\n", info->name);
fprintf(stderr, " Max input channels: %d\n", info->maxInputChannels);
param.channelCount = 1;
param.sampleFormat = paFloat32;
param.suggestedLatency = info->defaultLowInputLatency;
param.hostApiSpecificStreamInfo = nullptr;
float sample_rate = 16000;
PaStream *stream;
PaError err =
Pa_OpenStream(&stream, &param, nullptr, /* &outputParameters, */
sample_rate,
0, // frames per buffer
paClipOff, // we won't output out of range samples
// so don't bother clipping them
RecordCallback, nullptr);
if (err != paNoError) {
fprintf(stderr, "portaudio error: %s\n", Pa_GetErrorText(err));
exit(EXIT_FAILURE);
}
err = Pa_StartStream(stream);
fprintf(stderr, "Started\n");
if (err != paNoError) {
fprintf(stderr, "portaudio error: %s\n", Pa_GetErrorText(err));
exit(EXIT_FAILURE);
}
std::thread t(DetectKeyPress);
while (!stop) {
switch (state) {
case State::kIdle:
break;
case State::kRecording:
break;
case State::kDecoding: {
std::vector<float> buf;
{
std::lock_guard<std::mutex> lock(samples_mutex);
buf = std::move(samples);
}
auto s = recognizer.CreateStream();
s->AcceptWaveform(sample_rate, buf.data(), buf.size());
recognizer.DecodeStream(s.get());
SHERPA_ONNX_LOGE("Decoding Done! Result is:");
SHERPA_ONNX_LOGE("%s", s->GetResult().text.c_str());
state = State::kIdle;
SHERPA_ONNX_LOGE("Press Enter to start");
break;
}
}
Pa_Sleep(20); // sleep for 20ms
}
t.join();
err = Pa_CloseStream(stream);
if (err != paNoError) {
fprintf(stderr, "portaudio error: %s\n", Pa_GetErrorText(err));
exit(EXIT_FAILURE);
}
return 0;
}
... ...
... ... @@ -66,6 +66,7 @@ for a list of pre-trained models to download.
return -1;
}
fprintf(stderr, "Creating recognizer ...\n");
sherpa_onnx::OfflineRecognizer recognizer(config);
auto begin = std::chrono::steady_clock::now();
... ...