Fangjun Kuang
Committed by GitHub

Export kokoro to sherpa-onnx (#1713)

name: export-kokoro-to-onnx
on:
push:
branches:
- export-kokoro
workflow_dispatch:
concurrency:
group: export-kokoro-to-onnx-${{ github.ref }}
cancel-in-progress: true
jobs:
export-kokoro-to-onnx:
if: github.repository_owner == 'k2-fsa' || github.repository_owner == 'csukuangfj'
name: export kokoro
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest]
python-version: ["3.10"]
steps:
- uses: actions/checkout@v4
- name: Setup Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- name: Install Python dependencies
shell: bash
run: |
pip install -q "numpy<=1.26.4" onnx==1.16.0 onnxruntime==1.17.1 librosa soundfile piper_phonemize -f https://k2-fsa.github.io/icefall/piper_phonemize.html
- name: Run
shell: bash
run: |
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/espeak-ng-data.tar.bz2
tar xf espeak-ng-data.tar.bz2
rm espeak-ng-data.tar.bz2
cd scripts/kokoro
./run.sh
- name: Collect results
shell: bash
run: |
src=scripts/kokoro
d=kokoro-en-v0_19
mkdir $d
cp -a LICENSE $d/LICENSE
cp -a espeak-ng-data $d/
cp -v $src/kokoro-v0_19_hf.onnx $d/model.onnx
cp -v $src/voices.bin $d/
cp -v $src/tokens.txt $d/
cp -v $src/README-new.md $d/README.md
ls -lh $d/
tar cjfv $d.tar.bz2 $d
rm -rf $d
ls -h $.tar.bz2
- name: Publish to huggingface
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
uses: nick-fields/retry@v3
with:
max_attempts: 20
timeout_seconds: 200
shell: bash
command: |
git config --global user.email "csukuangfj@gmail.com"
git config --global user.name "Fangjun Kuang"
rm -rf huggingface
export GIT_LFS_SKIP_SMUDGE=1
export GIT_CLONE_PROTECTION_ACTIVE=false
git clone https://csukuangfj:$HF_TOKEN@huggingface.co/csukuangfj/kokoro-en-v0_19 huggingface
cd huggingface
rm -rf ./*
git fetch
git pull
git lfs track "cmn_dict"
git lfs track "ru_dict"
git lfs track "*.wav"
cp -a ../espeak-ng-data ./
mkdir -p test_wavs
cp -v ../scripts/kokoro/kokoro-v0_19_hf.onnx ./model.onnx
cp -v ../scripts/kokoro/kokoro-v0_19_hf-*.wav ./test_wavs/
cp -v ../scripts/kokoro/tokens.txt .
cp -v ../scripts/kokoro/voices.bin .
cp -v ../scripts/kokoro/README-new.md ./README.md
cp -v ../LICENSE ./
git lfs track "*.onnx"
git add .
ls -lh
git status
git commit -m "add models"
git push https://csukuangfj:$HF_TOKEN@huggingface.co/csukuangfj/kokoro-en-v0_19 main || true
- name: Release
uses: svenstaro/upload-release-action@v2
with:
file_glob: true
file: ./*.tar.bz2
overwrite: true
repo_name: k2-fsa/sherpa-onnx
repo_token: ${{ secrets.UPLOAD_GH_SHERPA_ONNX_TOKEN }}
tag: tts-models
... ...
voices.json
voices.bin
README-new.md
... ...
# Introduction
This folder contains scripts for adding meta data to models
from https://github.com/thewh1teagle/kokoro-onnx/releases/tag/model-files
See also
https://huggingface.co/hexgrad/Kokoro-82M/tree/main
and
https://huggingface.co/spaces/hexgrad/Kokoro-TTS
... ...
#!/usr/bin/env python3
# Copyright 2025 Xiaomi Corp. (authors: Fangjun Kuang)
import argparse
import json
from pathlib import Path
import numpy as np
import onnx
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", type=str, required=True, help="input and output onnx model"
)
parser.add_argument("--voices", type=str, required=True, help="Path to voices.json")
return parser.parse_args()
def load_voices(filename):
with open(filename) as f:
voices = json.load(f)
for key in voices:
voices[key] = np.array(voices[key], dtype=np.float32)
return voices
def get_vocab():
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
dicts = {}
for i in range(len((symbols))):
dicts[symbols[i]] = i
return dicts
def generate_tokens():
token2id = get_vocab()
with open("tokens.txt", "w", encoding="utf-8") as f:
for s, i in token2id.items():
f.write(f"{s} {i}\n")
def main():
args = get_args()
print(args.model, args.voices)
model = onnx.load(args.model)
voices = load_voices(args.voices)
if Path("./tokens.txt").is_file():
print("./tokens.txt exist, skip generating it")
else:
generate_tokens()
keys = list(voices.keys())
print(",".join(keys))
if Path("./voices.bin").is_file():
print("./voices.bin exists, skip generating it")
else:
with open("voices.bin", "wb") as f:
for k in keys:
f.write(voices[k].tobytes())
meta_data = {
"model_type": "kokoro",
"language": "English",
"has_espeak": 1,
"sample_rate": 24000,
"version": 1,
"voice": "en-us",
"style_dim": ",".join(map(str, voices[keys[0]].shape)),
"n_speakers": len(keys),
"speaker_names": ",".join(keys),
"model_url": "https://github.com/thewh1teagle/kokoro-onnx/releases/tag/model-files",
"see_also": "https://huggingface.co/spaces/hexgrad/Kokoro-TTS",
"see_also_2": "https://huggingface.co/hexgrad/Kokoro-82M",
"maintainer": "k2-fsa",
}
print(model.metadata_props)
while len(model.metadata_props):
model.metadata_props.pop()
for key, value in meta_data.items():
meta = model.metadata_props.add()
meta.key = key
meta.value = str(value)
print("--------------------")
print(model.metadata_props)
onnx.save(model, args.model)
print(f"Please see {args.model}, ./voices.bin, and ./tokens.txt")
if __name__ == "__main__":
main()
... ...
#!/usr/bin/env bash
# Copyright 2025 Xiaomi Corp. (authors: Fangjun Kuang)
set -ex
cat > README-new.md <<EOF
# Introduction
Files in this folder are from
https://github.com/thewh1teagle/kokoro-onnx/releases/tag/model-files
Please see also
https://huggingface.co/hexgrad/Kokoro-82M
and
https://huggingface.co/hexgrad/Kokoro-82M/discussions/14
EOF
files=(
kokoro-v0_19_hf.onnx
# kokoro-v0_19.onnx
# kokoro-quant.onnx
# kokoro-quant-convinteger.onnx
voices.json
)
for f in ${files[@]}; do
if [ ! -f ./$f ]; then
curl -SL -O https://github.com/thewh1teagle/kokoro-onnx/releases/download/model-files/$f
fi
done
models=(
# kokoro-v0_19
# kokoro-quant
# kokoro-quant-convinteger
kokoro-v0_19_hf
)
for m in ${models[@]}; do
./add-meta-data.py --model $m.onnx --voices ./voices.json
done
ls -l
echo "----------"
ls -lh
for m in ${models[@]}; do
./test.py --model $m.onnx --voices-bin ./voices.bin --tokens ./tokens.txt
done
ls -lh
... ...
#!/usr/bin/env python3
# Copyright 2025 Xiaomi Corp. (authors: Fangjun Kuang)
"""
female (7)
'af', 'af_bella', 'af_nicole','af_sarah', 'af_sky',
'bf_emma', 'bf_isabella',
male (4)
'am_adam', 'am_michael', 'bm_george', 'bm_lewis'
"""
import argparse
import time
from pathlib import Path
from typing import Dict, List
import numpy as np
try:
from piper_phonemize import phonemize_espeak
except Exception as ex:
raise RuntimeError(
f"{ex}\nPlease run\n"
"pip install piper_phonemize -f https://k2-fsa.github.io/icefall/piper_phonemize.html"
)
import onnxruntime as ort
import soundfile as sf
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model",
type=str,
required=True,
help="Path to the model",
)
parser.add_argument(
"--voices-bin",
type=str,
required=True,
help="Path to the voices.bin",
)
parser.add_argument(
"--tokens",
type=str,
required=True,
help="Path to tokens.txt",
)
return parser.parse_args()
def show(filename):
session_opts = ort.SessionOptions()
session_opts.log_severity_level = 3
sess = ort.InferenceSession(filename, session_opts)
for i in sess.get_inputs():
print(i)
print("-----")
for i in sess.get_outputs():
print(i)
# NodeArg(name='tokens', type='tensor(int64)', shape=[1, 'tokens1'])
# NodeArg(name='style', type='tensor(float)', shape=[1, 256])
# NodeArg(name='speed', type='tensor(float)', shape=[1])
# -----
# NodeArg(name='audio', type='tensor(float)', shape=['audio0'])
def load_tokens(filename: str) -> Dict[str, int]:
ans = dict()
with open(filename, encoding="utf-8") as f:
for line in f:
fields = line.strip().split()
if len(fields) == 2:
token, idx = fields
ans[token] = int(idx)
else:
assert len(fields) == 1, (len(fields), line)
ans[" "] = int(fields[0])
return ans
def load_voices(speaker_names: List[str], dim: List[int], voices_bin: str):
embedding = (
np.fromfile(voices_bin, dtype="uint8")
.view(np.float32)
.reshape(len(speaker_names), *dim)
)
print("embedding.shape", embedding.shape)
ans = dict()
for i in range(len(speaker_names)):
ans[speaker_names[i]] = embedding[i]
return ans
class OnnxModel:
def __init__(self, model_filename: str, voices_bin: str, tokens: str):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 1
self.session_opts = session_opts
self.model = ort.InferenceSession(
model_filename,
sess_options=self.session_opts,
providers=["CPUExecutionProvider"],
)
self.token2id = load_tokens(tokens)
meta = self.model.get_modelmeta().custom_metadata_map
print(meta)
dim = list(map(int, meta["style_dim"].split(",")))
speaker_names = meta["speaker_names"].split(",")
self.voices = load_voices(
speaker_names=speaker_names, dim=dim, voices_bin=voices_bin
)
self.sample_rate = int(meta["sample_rate"])
print(list(self.voices.keys()))
# ['af', 'af_bella', 'af_nicole', 'af_sarah', 'af_sky', 'am_adam',
# 'am_michael', 'bf_emma', 'bf_isabella', 'bm_george', 'bm_lewis']
# af -> (511, 1, 256)
self.max_len = self.voices[next(iter(self.voices))].shape[0] - 1
def __call__(self, text: str, voice):
tokens = phonemize_espeak(text, "en-us")
# tokens is List[List[str]]
# Each sentence is a List[str]
# len(tokens) == number of sentences
tokens = sum(tokens, []) # flatten
tokens = "".join(tokens)
tokens = tokens.replace("kəkˈoːɹoʊ", "kˈoʊkəɹoʊ").replace(
"kəkˈɔːɹəʊ", "kˈəʊkəɹəʊ"
)
tokens = list(tokens)
token_ids = [self.token2id[i] for i in tokens]
token_ids = token_ids[: self.max_len]
style = self.voices[voice][len(token_ids)]
token_ids = [0, *token_ids, 0]
token_ids = np.array([token_ids], dtype=np.int64)
speed = np.array([1.0], dtype=np.float32)
audio = self.model.run(
[
self.model.get_outputs()[0].name,
],
{
self.model.get_inputs()[0].name: token_ids,
self.model.get_inputs()[1].name: style,
self.model.get_inputs()[2].name: speed,
},
)[0]
return audio
def test(model, voice, text) -> np.ndarray:
pass
def main():
args = get_args()
print(vars(args))
show(args.model)
# tokens = phonemize_espeak("how are you doing?", "en-us")
# [['h', 'ˌ', 'a', 'ʊ', ' ', 'ɑ', 'ː', 'ɹ', ' ', 'j', 'u', 'ː', ' ', 'd', 'ˈ', 'u', 'ː', 'ɪ', 'ŋ', '?']]
m = OnnxModel(
model_filename=args.model, voices_bin=args.voices_bin, tokens=args.tokens
)
text = (
"Today as always, men fall into two groups: slaves and free men."
+ " Whoever does not have two-thirds of his day for himself, "
+ "is a slave, whatever he may be: a statesman, a businessman, "
+ "an official, or a scholar."
)
for i, voice in enumerate(m.voices.keys(), 1):
print(f"Testing {i}/{len(m.voices)} - {voice}/{args.model}")
start = time.time()
audio = m(text, voice=voice)
end = time.time()
elapsed_seconds = end - start
audio_duration = len(audio) / m.sample_rate
real_time_factor = elapsed_seconds / audio_duration
filename = f"{Path(args.model).stem}-{voice}.wav"
sf.write(
filename,
audio,
samplerate=m.sample_rate,
subtype="PCM_16",
)
print(f" Saved to {filename}")
print(f" Elapsed seconds: {elapsed_seconds:.3f}")
print(f" Audio duration in seconds: {audio_duration:.3f}")
print(
f" RTF: {elapsed_seconds:.3f}/{audio_duration:.3f} = {real_time_factor:.3f}"
)
if __name__ == "__main__":
main()
... ...
#!/usr/bin/env python3
# This script export ZH_EN TTS model, which supports both Chinese and English.
# This script exports ZH_EN TTS model, which supports both Chinese and English.
# This model has only 1 speaker.
from typing import Any, Dict
... ...