Fangjun Kuang
Committed by GitHub

Add non-streaming ASR APIs for node-addon-api (#868)

... ... @@ -22,5 +22,39 @@ node ./test_asr_streaming_ctc.js
# To decode with HLG.fst
node ./test_asr_streaming_ctc_hlg.js
rm -rf sherpa-onnx-streaming-zipformer-ctc-small-2024-03-18
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-streaming-paraformer-bilingual-zh-en.tar.bz2
tar xvf sherpa-onnx-streaming-paraformer-bilingual-zh-en.tar.bz2
rm sherpa-onnx-streaming-paraformer-bilingual-zh-en.tar.bz2
node ./test_asr_streaming_paraformer.js
rm -rf sherpa-onnx-streaming-paraformer-bilingual-zh-en
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-zipformer-en-2023-04-01.tar.bz2
tar xvf sherpa-onnx-zipformer-en-2023-04-01.tar.bz2
rm sherpa-onnx-zipformer-en-2023-04-01.tar.bz2
node ./test_asr_non_streaming_transducer.js
rm -rf sherpa-onnx-zipformer-en-2023-04-01
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-whisper-tiny.en.tar.bz2
tar xvf sherpa-onnx-whisper-tiny.en.tar.bz2
rm sherpa-onnx-whisper-tiny.en.tar.bz2
node ./test_asr_non_streaming_whisper.js
rm -rf sherpa-onnx-whisper-tiny.en
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-fast-conformer-ctc-be-de-en-es-fr-hr-it-pl-ru-uk-20k.tar.bz2
tar xvf sherpa-onnx-nemo-fast-conformer-ctc-be-de-en-es-fr-hr-it-pl-ru-uk-20k.tar.bz2
rm sherpa-onnx-nemo-fast-conformer-ctc-be-de-en-es-fr-hr-it-pl-ru-uk-20k.tar.bz2
node ./test_asr_non_streaming_nemo_ctc.js
rm -rf sherpa-onnx-nemo-fast-conformer-ctc-be-de-en-es-fr-hr-it-pl-ru-uk-20k
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-paraformer-zh-2023-03-28.tar.bz2
tar xvf sherpa-onnx-paraformer-zh-2023-03-28.tar.bz2
rm sherpa-onnx-paraformer-zh-2023-03-28.tar.bz2
node ./test_asr_non_streaming_paraformer.js
rm -rf sherpa-onnx-paraformer-zh-2023-03-28
... ...
... ... @@ -39,7 +39,7 @@ npm install naudiodon2
node ./test_vad_microphone.js
```
## Streaming speech recognition with zipformer transducer
## Streaming speech recognition with Zipformer transducer
```bash
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20.tar.bz2
... ... @@ -54,7 +54,7 @@ npm install naudiodon2
node ./test_asr_streaming_transducer_microphone.js
```
## Streaming speech recognition with zipformer CTC
## Streaming speech recognition with Zipformer CTC
```bash
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-streaming-zipformer-ctc-small-2024-03-18.tar.bz2
... ... @@ -72,3 +72,74 @@ npm install naudiodon2
node ./test_asr_streaming_ctc_microphone.js
node ./test_asr_streaming_ctc_hlg_microphone.js
```
## Streaming speech recognition with Paraformer
```bash
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-streaming-paraformer-bilingual-zh-en.tar.bz2
tar xvf sherpa-onnx-streaming-paraformer-bilingual-zh-en.tar.bz2
rm sherpa-onnx-streaming-paraformer-bilingual-zh-en.tar.bz2
node ./test_asr_streaming_paraformer.js
# To run the test with a microphone, you need to install the package naudiodon2
npm install naudiodon2
node ./test_asr_streaming_paraformer_microphone.js
```
## Non-streaming speech recognition with Zipformer transducer
```bash
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-zipformer-en-2023-04-01.tar.bz2
tar xvf sherpa-onnx-zipformer-en-2023-04-01.tar.bz2
rm sherpa-onnx-zipformer-en-2023-04-01.tar.bz2
node ./test_asr_non_streaming_transducer.js
# To run VAD + non-streaming ASR with transudcer using a microphone
npm install naudiodon2
node ./test_vad_asr_non_streaming_transducer_microphone.js
```
## Non-streaming speech recognition with Whisper
```bash
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-whisper-tiny.en.tar.bz2
tar xvf sherpa-onnx-whisper-tiny.en.tar.bz2
rm sherpa-onnx-whisper-tiny.en.tar.bz2
node ./test_asr_non_streaming_whisper.js
# To run VAD + non-streaming ASR with Paraformer using a microphone
npm install naudiodon2
node ./test_vad_asr_non_streaming_whisper_microphone.js
```
## Non-streaming speech recognition with NeMo CTC models
```bash
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-fast-conformer-ctc-be-de-en-es-fr-hr-it-pl-ru-uk-20k.tar.bz2
tar xvf sherpa-onnx-nemo-fast-conformer-ctc-be-de-en-es-fr-hr-it-pl-ru-uk-20k.tar.bz2
rm sherpa-onnx-nemo-fast-conformer-ctc-be-de-en-es-fr-hr-it-pl-ru-uk-20k.tar.bz2
node ./test_asr_non_streaming_nemo_ctc.js
# To run VAD + non-streaming ASR with Paraformer using a microphone
npm install naudiodon2
node ./test_vad_asr_non_streaming_nemo_ctc_microphone.js
```
## Non-streaming speech recognition with Paraformer
```bash
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-paraformer-zh-2023-03-28.tar.bz2
tar xvf sherpa-onnx-paraformer-zh-2023-03-28.tar.bz2
rm sherpa-onnx-paraformer-zh-2023-03-28.tar.bz2
node ./test_asr_non_streaming_paraformer.js
# To run VAD + non-streaming ASR with Paraformer using a microphone
npm install naudiodon2
node ./test_vad_asr_non_streaming_paraformer_microphone.js
```
... ...
// Copyright (c) 2024 Xiaomi Corporation
const sherpa_onnx = require('sherpa-onnx-node');
const performance = require('perf_hooks').performance;
// Please download test files from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
const config = {
'featConfig': {
'sampleRate': 16000,
'featureDim': 80,
},
'modelConfig': {
'nemoCtc': {
'model':
'./sherpa-onnx-nemo-fast-conformer-ctc-be-de-en-es-fr-hr-it-pl-ru-uk-20k/model.onnx',
},
'tokens':
'./sherpa-onnx-nemo-fast-conformer-ctc-be-de-en-es-fr-hr-it-pl-ru-uk-20k/tokens.txt',
'numThreads': 2,
'provider': 'cpu',
'debug': 1,
}
};
const waveFilename =
'./sherpa-onnx-nemo-fast-conformer-ctc-be-de-en-es-fr-hr-it-pl-ru-uk-20k/test_wavs/de-german.wav';
const recognizer = new sherpa_onnx.OfflineRecognizer(config);
console.log('Started')
let start = performance.now();
const stream = recognizer.createStream();
const wave = sherpa_onnx.readWave(waveFilename);
stream.acceptWaveform({sampleRate: wave.sampleRate, samples: wave.samples});
recognizer.decode(stream);
result = recognizer.getResult(stream)
let stop = performance.now();
console.log('Done')
const elapsed_seconds = (stop - start) / 1000;
const duration = wave.samples.length / wave.sampleRate;
const real_time_factor = elapsed_seconds / duration;
console.log('Wave duration', duration.toFixed(3), 'secodns')
console.log('Elapsed', elapsed_seconds.toFixed(3), 'secodns')
console.log(
`RTF = ${elapsed_seconds.toFixed(3)}/${duration.toFixed(3)} =`,
real_time_factor.toFixed(3))
console.log(waveFilename)
console.log('result\n', result)
... ...
// Copyright (c) 2024 Xiaomi Corporation
const sherpa_onnx = require('sherpa-onnx-node');
const performance = require('perf_hooks').performance;
// Please download test files from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
const config = {
'featConfig': {
'sampleRate': 16000,
'featureDim': 80,
},
'modelConfig': {
'paraformer': {
'model': './sherpa-onnx-paraformer-zh-2023-03-28/model.int8.onnx',
},
'tokens': './sherpa-onnx-paraformer-zh-2023-03-28/tokens.txt',
'numThreads': 2,
'provider': 'cpu',
'debug': 1,
}
};
const waveFilename =
'./sherpa-onnx-paraformer-zh-2023-03-28/test_wavs/5-henan.wav';
const recognizer = new sherpa_onnx.OfflineRecognizer(config);
console.log('Started')
let start = performance.now();
const stream = recognizer.createStream();
const wave = sherpa_onnx.readWave(waveFilename);
stream.acceptWaveform({sampleRate: wave.sampleRate, samples: wave.samples});
recognizer.decode(stream);
result = recognizer.getResult(stream)
let stop = performance.now();
console.log('Done')
const elapsed_seconds = (stop - start) / 1000;
const duration = wave.samples.length / wave.sampleRate;
const real_time_factor = elapsed_seconds / duration;
console.log('Wave duration', duration.toFixed(3), 'secodns')
console.log('Elapsed', elapsed_seconds.toFixed(3), 'secodns')
console.log(
`RTF = ${elapsed_seconds.toFixed(3)}/${duration.toFixed(3)} =`,
real_time_factor.toFixed(3))
console.log(waveFilename)
console.log('result\n', result)
... ...
// Copyright (c) 2024 Xiaomi Corporation
const sherpa_onnx = require('sherpa-onnx-node');
const performance = require('perf_hooks').performance;
// Please download test files from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
const config = {
'featConfig': {
'sampleRate': 16000,
'featureDim': 80,
},
'modelConfig': {
'transducer': {
'encoder':
'./sherpa-onnx-zipformer-en-2023-04-01/encoder-epoch-99-avg-1.int8.onnx',
'decoder':
'./sherpa-onnx-zipformer-en-2023-04-01/decoder-epoch-99-avg-1.onnx',
'joiner':
'./sherpa-onnx-zipformer-en-2023-04-01/joiner-epoch-99-avg-1.int8.onnx',
},
'tokens': './sherpa-onnx-zipformer-en-2023-04-01/tokens.txt',
'numThreads': 2,
'provider': 'cpu',
'debug': 1,
}
};
const waveFilename = './sherpa-onnx-zipformer-en-2023-04-01/test_wavs/1.wav';
const recognizer = new sherpa_onnx.OfflineRecognizer(config);
console.log('Started')
let start = performance.now();
const stream = recognizer.createStream();
const wave = sherpa_onnx.readWave(waveFilename);
stream.acceptWaveform({sampleRate: wave.sampleRate, samples: wave.samples});
recognizer.decode(stream);
result = recognizer.getResult(stream)
let stop = performance.now();
console.log('Done')
const elapsed_seconds = (stop - start) / 1000;
const duration = wave.samples.length / wave.sampleRate;
const real_time_factor = elapsed_seconds / duration;
console.log('Wave duration', duration.toFixed(3), 'secodns')
console.log('Elapsed', elapsed_seconds.toFixed(3), 'secodns')
console.log(
`RTF = ${elapsed_seconds.toFixed(3)}/${duration.toFixed(3)} =`,
real_time_factor.toFixed(3))
console.log(waveFilename)
console.log('result\n', result)
... ...
// Copyright (c) 2024 Xiaomi Corporation
const sherpa_onnx = require('sherpa-onnx-node');
const performance = require('perf_hooks').performance;
// Please download test files from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
const config = {
'featConfig': {
'sampleRate': 16000,
'featureDim': 80,
},
'modelConfig': {
'whisper': {
'encoder': './sherpa-onnx-whisper-tiny.en/tiny.en-encoder.int8.onnx',
'decoder': './sherpa-onnx-whisper-tiny.en/tiny.en-decoder.int8.onnx',
},
'tokens': './sherpa-onnx-whisper-tiny.en/tiny.en-tokens.txt',
'numThreads': 2,
'provider': 'cpu',
'debug': 1,
}
};
const waveFilename = './sherpa-onnx-whisper-tiny.en/test_wavs/0.wav';
const recognizer = new sherpa_onnx.OfflineRecognizer(config);
console.log('Started')
let start = performance.now();
const stream = recognizer.createStream();
const wave = sherpa_onnx.readWave(waveFilename);
stream.acceptWaveform({sampleRate: wave.sampleRate, samples: wave.samples});
recognizer.decode(stream);
result = recognizer.getResult(stream)
let stop = performance.now();
console.log('Done')
const elapsed_seconds = (stop - start) / 1000;
const duration = wave.samples.length / wave.sampleRate;
const real_time_factor = elapsed_seconds / duration;
console.log('Wave duration', duration.toFixed(3), 'secodns')
console.log('Elapsed', elapsed_seconds.toFixed(3), 'secodns')
console.log(
`RTF = ${elapsed_seconds.toFixed(3)}/${duration.toFixed(3)} =`,
real_time_factor.toFixed(3))
console.log(waveFilename)
console.log('result\n', result)
... ...
// Copyright (c) 2024 Xiaomi Corporation
const sherpa_onnx = require('sherpa-onnx-node');
const performance = require('perf_hooks').performance;
// Please download test files from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
const config = {
'featConfig': {
'sampleRate': 16000,
'featureDim': 80,
},
'modelConfig': {
'paraformer': {
'encoder':
'./sherpa-onnx-streaming-paraformer-bilingual-zh-en/encoder.int8.onnx',
'decoder':
'./sherpa-onnx-streaming-paraformer-bilingual-zh-en/decoder.int8.onnx',
},
'tokens': './sherpa-onnx-streaming-paraformer-bilingual-zh-en/tokens.txt',
'numThreads': 2,
'provider': 'cpu',
'debug': 1,
}
};
const waveFilename =
'./sherpa-onnx-streaming-paraformer-bilingual-zh-en/test_wavs/0.wav';
const recognizer = new sherpa_onnx.OnlineRecognizer(config);
console.log('Started')
let start = performance.now();
const stream = recognizer.createStream();
const wave = sherpa_onnx.readWave(waveFilename);
stream.acceptWaveform({sampleRate: wave.sampleRate, samples: wave.samples});
const tailPadding = new Float32Array(wave.sampleRate * 0.4);
stream.acceptWaveform({samples: tailPadding, sampleRate: wave.sampleRate});
while (recognizer.isReady(stream)) {
recognizer.decode(stream);
}
result = recognizer.getResult(stream)
let stop = performance.now();
console.log('Done')
const elapsed_seconds = (stop - start) / 1000;
const duration = wave.samples.length / wave.sampleRate;
const real_time_factor = elapsed_seconds / duration;
console.log('Wave duration', duration.toFixed(3), 'secodns')
console.log('Elapsed', elapsed_seconds.toFixed(3), 'secodns')
console.log(
`RTF = ${elapsed_seconds.toFixed(3)}/${duration.toFixed(3)} =`,
real_time_factor.toFixed(3))
console.log(waveFilename)
console.log('result\n', result)
... ...
// Copyright (c) 2023-2024 Xiaomi Corporation (authors: Fangjun Kuang)
//
const portAudio = require('naudiodon2');
// console.log(portAudio.getDevices());
const sherpa_onnx = require('sherpa-onnx-node');
function createOnlineRecognizer() {
const config = {
'featConfig': {
'sampleRate': 16000,
'featureDim': 80,
},
'modelConfig': {
'paraformer': {
'encoder':
'./sherpa-onnx-streaming-paraformer-bilingual-zh-en/encoder.int8.onnx',
'decoder':
'./sherpa-onnx-streaming-paraformer-bilingual-zh-en/decoder.int8.onnx',
},
'tokens': './sherpa-onnx-streaming-paraformer-bilingual-zh-en/tokens.txt',
'numThreads': 2,
'provider': 'cpu',
'debug': 1,
},
'decodingMethod': 'greedy_search',
'maxActivePaths': 4,
'enableEndpoint': true,
'rule1MinTrailingSilence': 2.4,
'rule2MinTrailingSilence': 1.2,
'rule3MinUtteranceLength': 20
};
return new sherpa_onnx.OnlineRecognizer(config);
}
const recognizer = createOnlineRecognizer();
const stream = recognizer.createStream();
let lastText = '';
let segmentIndex = 0;
const ai = new portAudio.AudioIO({
inOptions: {
channelCount: 1,
closeOnError: true, // Close the stream if an audio error is detected, if
// set false then just log the error
deviceId: -1, // Use -1 or omit the deviceId to select the default device
sampleFormat: portAudio.SampleFormatFloat32,
sampleRate: recognizer.config.featConfig.sampleRate
}
});
const display = new sherpa_onnx.Display(50);
ai.on('data', data => {
const samples = new Float32Array(data.buffer);
stream.acceptWaveform(
{sampleRate: recognizer.config.featConfig.sampleRate, samples: samples});
while (recognizer.isReady(stream)) {
recognizer.decode(stream);
}
const isEndpoint = recognizer.isEndpoint(stream);
let text = recognizer.getResult(stream).text.toLowerCase();
if (isEndpoint) {
// for online paraformer models, we have to manually padding on endpoint
// so that the last word can be recognized
const tailPadding =
new Float32Array(recognizer.config.featConfig.sampleRate * 0.4);
stream.acceptWaveform({
samples: tailPadding,
sampleRate: recognizer.config.featConfig.sampleRate
});
while (recognizer.isReady(stream)) {
recognizer.decode(stream);
}
text = recognizer.getResult(stream).text.toLowerCase();
}
if (text.length > 0 && lastText != text) {
lastText = text;
display.print(segmentIndex, lastText);
}
if (isEndpoint) {
if (text.length > 0) {
lastText = text;
segmentIndex += 1;
}
recognizer.reset(stream)
}
});
ai.on('close', () => {
console.log('Free resources');
stream.free();
recognizer.free();
});
ai.start();
console.log('Started! Please speak')
... ...
// Copyright (c) 2023-2024 Xiaomi Corporation (authors: Fangjun Kuang)
//
const portAudio = require('naudiodon2');
// console.log(portAudio.getDevices());
const sherpa_onnx = require('sherpa-onnx-node');
function createRecognizer() {
// Please download test files from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
const config = {
'featConfig': {
'sampleRate': 16000,
'featureDim': 80,
},
'modelConfig': {
'nemoCtc': {
'model':
'./sherpa-onnx-nemo-fast-conformer-ctc-be-de-en-es-fr-hr-it-pl-ru-uk-20k/model.onnx',
},
'tokens':
'./sherpa-onnx-nemo-fast-conformer-ctc-be-de-en-es-fr-hr-it-pl-ru-uk-20k/tokens.txt',
'numThreads': 2,
'provider': 'cpu',
'debug': 1,
}
};
return new sherpa_onnx.OfflineRecognizer(config);
}
function createVad() {
// please download silero_vad.onnx from
// https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
const config = {
sileroVad: {
model: './silero_vad.onnx',
threshold: 0.5,
minSpeechDuration: 0.25,
minSilenceDuration: 0.5,
windowSize: 512,
},
sampleRate: 16000,
debug: true,
numThreads: 1,
};
const bufferSizeInSeconds = 60;
return new sherpa_onnx.Vad(config, bufferSizeInSeconds);
}
const recognizer = createRecognizer();
const vad = createVad();
const bufferSizeInSeconds = 30;
const buffer =
new sherpa_onnx.CircularBuffer(bufferSizeInSeconds * vad.config.sampleRate);
const ai = new portAudio.AudioIO({
inOptions: {
channelCount: 1,
closeOnError: true, // Close the stream if an audio error is detected, if
// set false then just log the error
deviceId: -1, // Use -1 or omit the deviceId to select the default device
sampleFormat: portAudio.SampleFormatFloat32,
sampleRate: vad.config.sampleRate
}
});
let printed = false;
let index = 0;
ai.on('data', data => {
const windowSize = vad.config.sileroVad.windowSize;
buffer.push(new Float32Array(data.buffer));
while (buffer.size() > windowSize) {
const samples = buffer.get(buffer.head(), windowSize);
buffer.pop(windowSize);
vad.acceptWaveform(samples);
}
while (!vad.isEmpty()) {
const segment = vad.front();
vad.pop();
const stream = recognizer.createStream();
stream.acceptWaveform({
samples: segment.samples,
sampleRate: recognizer.config.featConfig.sampleRate
});
recognizer.decode(stream);
const r = recognizer.getResult(stream);
if (r.text.length > 0) {
const text = r.text.toLowerCase().trim();
console.log(`${index}: ${text}`);
const filename = `${index}-${text}-${
new Date()
.toLocaleTimeString('en-US', {hour12: false})
.split(' ')[0]}.wav`;
sherpa_onnx.writeWave(
filename,
{samples: segment.samples, sampleRate: vad.config.sampleRate})
index += 1;
}
}
});
ai.start();
console.log('Started! Please speak')
... ...
// Copyright (c) 2023-2024 Xiaomi Corporation (authors: Fangjun Kuang)
//
const portAudio = require('naudiodon2');
// console.log(portAudio.getDevices());
const sherpa_onnx = require('sherpa-onnx-node');
function createRecognizer() {
// Please download test files from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
const config = {
'featConfig': {
'sampleRate': 16000,
'featureDim': 80,
},
'modelConfig': {
'paraformer': {
'model': './sherpa-onnx-paraformer-zh-2023-03-28/model.int8.onnx',
},
'tokens': './sherpa-onnx-paraformer-zh-2023-03-28/tokens.txt',
'numThreads': 2,
'provider': 'cpu',
'debug': 1,
}
};
return new sherpa_onnx.OfflineRecognizer(config);
}
function createVad() {
// please download silero_vad.onnx from
// https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
const config = {
sileroVad: {
model: './silero_vad.onnx',
threshold: 0.5,
minSpeechDuration: 0.25,
minSilenceDuration: 0.5,
windowSize: 512,
},
sampleRate: 16000,
debug: true,
numThreads: 1,
};
const bufferSizeInSeconds = 60;
return new sherpa_onnx.Vad(config, bufferSizeInSeconds);
}
const recognizer = createRecognizer();
const vad = createVad();
const bufferSizeInSeconds = 30;
const buffer =
new sherpa_onnx.CircularBuffer(bufferSizeInSeconds * vad.config.sampleRate);
const ai = new portAudio.AudioIO({
inOptions: {
channelCount: 1,
closeOnError: true, // Close the stream if an audio error is detected, if
// set false then just log the error
deviceId: -1, // Use -1 or omit the deviceId to select the default device
sampleFormat: portAudio.SampleFormatFloat32,
sampleRate: vad.config.sampleRate
}
});
let printed = false;
let index = 0;
ai.on('data', data => {
const windowSize = vad.config.sileroVad.windowSize;
buffer.push(new Float32Array(data.buffer));
while (buffer.size() > windowSize) {
const samples = buffer.get(buffer.head(), windowSize);
buffer.pop(windowSize);
vad.acceptWaveform(samples);
}
while (!vad.isEmpty()) {
const segment = vad.front();
vad.pop();
const stream = recognizer.createStream();
stream.acceptWaveform({
samples: segment.samples,
sampleRate: recognizer.config.featConfig.sampleRate
});
recognizer.decode(stream);
const r = recognizer.getResult(stream);
if (r.text.length > 0) {
const text = r.text.toLowerCase().trim();
console.log(`${index}: ${text}`);
const filename = `${index}-${text}-${
new Date()
.toLocaleTimeString('en-US', {hour12: false})
.split(' ')[0]}.wav`;
sherpa_onnx.writeWave(
filename,
{samples: segment.samples, sampleRate: vad.config.sampleRate})
index += 1;
}
}
});
ai.start();
console.log('Started! Please speak')
... ...
// Copyright (c) 2023-2024 Xiaomi Corporation (authors: Fangjun Kuang)
//
const portAudio = require('naudiodon2');
// console.log(portAudio.getDevices());
const sherpa_onnx = require('sherpa-onnx-node');
function createRecognizer() {
// Please download test files from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
const config = {
'featConfig': {
'sampleRate': 16000,
'featureDim': 80,
},
'modelConfig': {
'transducer': {
'encoder':
'./sherpa-onnx-zipformer-en-2023-04-01/encoder-epoch-99-avg-1.int8.onnx',
'decoder':
'./sherpa-onnx-zipformer-en-2023-04-01/decoder-epoch-99-avg-1.onnx',
'joiner':
'./sherpa-onnx-zipformer-en-2023-04-01/joiner-epoch-99-avg-1.int8.onnx',
},
'tokens': './sherpa-onnx-zipformer-en-2023-04-01/tokens.txt',
'numThreads': 2,
'provider': 'cpu',
'debug': 1,
}
};
return new sherpa_onnx.OfflineRecognizer(config);
}
function createVad() {
// please download silero_vad.onnx from
// https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
const config = {
sileroVad: {
model: './silero_vad.onnx',
threshold: 0.5,
minSpeechDuration: 0.25,
minSilenceDuration: 0.5,
windowSize: 512,
},
sampleRate: 16000,
debug: true,
numThreads: 1,
};
const bufferSizeInSeconds = 60;
return new sherpa_onnx.Vad(config, bufferSizeInSeconds);
}
const recognizer = createRecognizer();
const vad = createVad();
const bufferSizeInSeconds = 30;
const buffer =
new sherpa_onnx.CircularBuffer(bufferSizeInSeconds * vad.config.sampleRate);
const ai = new portAudio.AudioIO({
inOptions: {
channelCount: 1,
closeOnError: true, // Close the stream if an audio error is detected, if
// set false then just log the error
deviceId: -1, // Use -1 or omit the deviceId to select the default device
sampleFormat: portAudio.SampleFormatFloat32,
sampleRate: vad.config.sampleRate
}
});
let printed = false;
let index = 0;
ai.on('data', data => {
const windowSize = vad.config.sileroVad.windowSize;
buffer.push(new Float32Array(data.buffer));
while (buffer.size() > windowSize) {
const samples = buffer.get(buffer.head(), windowSize);
buffer.pop(windowSize);
vad.acceptWaveform(samples);
}
while (!vad.isEmpty()) {
const segment = vad.front();
vad.pop();
const stream = recognizer.createStream();
stream.acceptWaveform({
samples: segment.samples,
sampleRate: recognizer.config.featConfig.sampleRate
});
recognizer.decode(stream);
const r = recognizer.getResult(stream);
if (r.text.length > 0) {
const text = r.text.toLowerCase().trim();
console.log(`${index}: ${text}`);
const filename = `${index}-${text}-${
new Date()
.toLocaleTimeString('en-US', {hour12: false})
.split(' ')[0]}.wav`;
sherpa_onnx.writeWave(
filename,
{samples: segment.samples, sampleRate: vad.config.sampleRate})
index += 1;
}
}
});
ai.start();
console.log('Started! Please speak')
... ...
// Copyright (c) 2023-2024 Xiaomi Corporation (authors: Fangjun Kuang)
//
const portAudio = require('naudiodon2');
// console.log(portAudio.getDevices());
const sherpa_onnx = require('sherpa-onnx-node');
function createRecognizer() {
// Please download test files from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
const config = {
'featConfig': {
'sampleRate': 16000,
'featureDim': 80,
},
'modelConfig': {
'whisper': {
'encoder': './sherpa-onnx-whisper-tiny.en/tiny.en-encoder.int8.onnx',
'decoder': './sherpa-onnx-whisper-tiny.en/tiny.en-decoder.int8.onnx',
},
'tokens': './sherpa-onnx-whisper-tiny.en/tiny.en-tokens.txt',
'numThreads': 2,
'provider': 'cpu',
'debug': 1,
}
};
return new sherpa_onnx.OfflineRecognizer(config);
}
function createVad() {
// please download silero_vad.onnx from
// https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
const config = {
sileroVad: {
model: './silero_vad.onnx',
threshold: 0.5,
minSpeechDuration: 0.25,
minSilenceDuration: 0.5,
windowSize: 512,
},
sampleRate: 16000,
debug: true,
numThreads: 1,
};
const bufferSizeInSeconds = 60;
return new sherpa_onnx.Vad(config, bufferSizeInSeconds);
}
const recognizer = createRecognizer();
const vad = createVad();
const bufferSizeInSeconds = 30;
const buffer =
new sherpa_onnx.CircularBuffer(bufferSizeInSeconds * vad.config.sampleRate);
const ai = new portAudio.AudioIO({
inOptions: {
channelCount: 1,
closeOnError: true, // Close the stream if an audio error is detected, if
// set false then just log the error
deviceId: -1, // Use -1 or omit the deviceId to select the default device
sampleFormat: portAudio.SampleFormatFloat32,
sampleRate: vad.config.sampleRate
}
});
let printed = false;
let index = 0;
ai.on('data', data => {
const windowSize = vad.config.sileroVad.windowSize;
buffer.push(new Float32Array(data.buffer));
while (buffer.size() > windowSize) {
const samples = buffer.get(buffer.head(), windowSize);
buffer.pop(windowSize);
vad.acceptWaveform(samples);
}
while (!vad.isEmpty()) {
const segment = vad.front();
vad.pop();
const stream = recognizer.createStream();
stream.acceptWaveform({
samples: segment.samples,
sampleRate: recognizer.config.featConfig.sampleRate
});
recognizer.decode(stream);
const r = recognizer.getResult(stream);
if (r.text.length > 0) {
const text = r.text.toLowerCase().trim();
console.log(`${index}: ${text}`);
const filename = `${index}-${text}-${
new Date()
.toLocaleTimeString('en-US', {hour12: false})
.split(' ')[0]}.wav`;
sherpa_onnx.writeWave(
filename,
{samples: segment.samples, sampleRate: vad.config.sampleRate})
index += 1;
}
}
});
ai.start();
console.log('Started! Please speak')
... ...
... ... @@ -18,6 +18,7 @@ add_definitions(-DNAPI_VERSION=3)
include_directories(${CMAKE_JS_INC})
set(srcs
src/non-streaming-asr.cc
src/sherpa-onnx-node-addon-api.cc
src/streaming-asr.cc
src/vad.cc
... ...
const addon = require('./addon.js');
class OfflineStream {
constructor(handle) {
this.handle = handle;
}
// obj is {samples: samples, sampleRate: sampleRate}
// samples is a float32 array containing samples in the range [-1, 1]
// sampleRate is a number
acceptWaveform(obj) {
addon.acceptWaveformOffline(this.handle, obj)
}
}
class OfflineRecognizer {
constructor(config) {
this.handle = addon.createOfflineRecognizer(config);
this.config = config
}
createStream() {
const handle = addon.createOfflineStream(this.handle);
return new OfflineStream(handle);
}
decode(stream) {
addon.decodeOfflineStream(this.handle, stream.handle);
}
getResult(stream) {
const jsonStr = addon.getOfflineStreamResultAsJson(stream.handle);
return JSON.parse(jsonStr);
}
}
module.exports = {
OfflineRecognizer,
}
... ...
const addon = require('./addon.js')
const streaming_asr = require('./streaming-asr.js');
const non_streaming_asr = require('./non-streaming-asr.js');
const vad = require('./vad.js');
module.exports = {
OnlineRecognizer: streaming_asr.OnlineRecognizer,
OfflineRecognizer: non_streaming_asr.OfflineRecognizer,
readWave: addon.readWave,
writeWave: addon.writeWave,
Display: streaming_asr.Display,
... ...
// scripts/node-addon-api/src/non-streaming-asr.cc
//
// Copyright (c) 2024 Xiaomi Corporation
#include <sstream>
#include "napi.h" // NOLINT
#include "sherpa-onnx/c-api/c-api.h"
// defined in ./streaming-asr.cc
SherpaOnnxFeatureConfig GetFeatureConfig(Napi::Object obj);
static SherpaOnnxOfflineTransducerModelConfig GetOfflineTransducerModelConfig(
Napi::Object obj) {
SherpaOnnxOfflineTransducerModelConfig config;
memset(&config, 0, sizeof(config));
if (!obj.Has("transducer") || !obj.Get("transducer").IsObject()) {
return config;
}
Napi::Object o = obj.Get("transducer").As<Napi::Object>();
if (o.Has("encoder") && o.Get("encoder").IsString()) {
Napi::String encoder = o.Get("encoder").As<Napi::String>();
std::string s = encoder.Utf8Value();
char *p = new char[s.size() + 1];
std::copy(s.begin(), s.end(), p);
p[s.size()] = 0;
config.encoder = p;
}
if (o.Has("decoder") && o.Get("decoder").IsString()) {
Napi::String decoder = o.Get("decoder").As<Napi::String>();
std::string s = decoder.Utf8Value();
char *p = new char[s.size() + 1];
std::copy(s.begin(), s.end(), p);
p[s.size()] = 0;
config.decoder = p;
}
if (o.Has("joiner") && o.Get("joiner").IsString()) {
Napi::String joiner = o.Get("joiner").As<Napi::String>();
std::string s = joiner.Utf8Value();
char *p = new char[s.size() + 1];
std::copy(s.begin(), s.end(), p);
p[s.size()] = 0;
config.joiner = p;
}
return config;
}
static SherpaOnnxOfflineParaformerModelConfig GetOfflineParaformerModelConfig(
Napi::Object obj) {
SherpaOnnxOfflineParaformerModelConfig config;
memset(&config, 0, sizeof(config));
if (!obj.Has("paraformer") || !obj.Get("paraformer").IsObject()) {
return config;
}
Napi::Object o = obj.Get("paraformer").As<Napi::Object>();
if (o.Has("model") && o.Get("model").IsString()) {
Napi::String model = o.Get("model").As<Napi::String>();
std::string s = model.Utf8Value();
char *p = new char[s.size() + 1];
std::copy(s.begin(), s.end(), p);
p[s.size()] = 0;
config.model = p;
}
return config;
}
static SherpaOnnxOfflineNemoEncDecCtcModelConfig GetOfflineNeMoCtcModelConfig(
Napi::Object obj) {
SherpaOnnxOfflineNemoEncDecCtcModelConfig config;
memset(&config, 0, sizeof(config));
if (!obj.Has("nemoCtc") || !obj.Get("nemoCtc").IsObject()) {
return config;
}
Napi::Object o = obj.Get("nemoCtc").As<Napi::Object>();
if (o.Has("model") && o.Get("model").IsString()) {
Napi::String model = o.Get("model").As<Napi::String>();
std::string s = model.Utf8Value();
char *p = new char[s.size() + 1];
std::copy(s.begin(), s.end(), p);
p[s.size()] = 0;
config.model = p;
}
return config;
}
static SherpaOnnxOfflineWhisperModelConfig GetOfflineWhisperModelConfig(
Napi::Object obj) {
SherpaOnnxOfflineWhisperModelConfig config;
memset(&config, 0, sizeof(config));
if (!obj.Has("whisper") || !obj.Get("whisper").IsObject()) {
return config;
}
Napi::Object o = obj.Get("whisper").As<Napi::Object>();
if (o.Has("encoder") && o.Get("encoder").IsString()) {
Napi::String encoder = o.Get("encoder").As<Napi::String>();
std::string s = encoder.Utf8Value();
char *p = new char[s.size() + 1];
std::copy(s.begin(), s.end(), p);
p[s.size()] = 0;
config.encoder = p;
}
if (o.Has("decoder") && o.Get("decoder").IsString()) {
Napi::String decoder = o.Get("decoder").As<Napi::String>();
std::string s = decoder.Utf8Value();
char *p = new char[s.size() + 1];
std::copy(s.begin(), s.end(), p);
p[s.size()] = 0;
config.decoder = p;
}
if (o.Has("language") && o.Get("language").IsString()) {
Napi::String language = o.Get("language").As<Napi::String>();
std::string s = language.Utf8Value();
char *p = new char[s.size() + 1];
std::copy(s.begin(), s.end(), p);
p[s.size()] = 0;
config.language = p;
}
if (o.Has("task") && o.Get("task").IsString()) {
Napi::String task = o.Get("task").As<Napi::String>();
std::string s = task.Utf8Value();
char *p = new char[s.size() + 1];
std::copy(s.begin(), s.end(), p);
p[s.size()] = 0;
config.task = p;
}
return config;
}
static SherpaOnnxOfflineTdnnModelConfig GetOfflineTdnnModelConfig(
Napi::Object obj) {
SherpaOnnxOfflineTdnnModelConfig config;
memset(&config, 0, sizeof(config));
if (!obj.Has("tdnn") || !obj.Get("tdnn").IsObject()) {
return config;
}
Napi::Object o = obj.Get("tdnn").As<Napi::Object>();
if (o.Has("model") && o.Get("model").IsString()) {
Napi::String model = o.Get("model").As<Napi::String>();
std::string s = model.Utf8Value();
char *p = new char[s.size() + 1];
std::copy(s.begin(), s.end(), p);
p[s.size()] = 0;
config.model = p;
}
return config;
}
static SherpaOnnxOfflineModelConfig GetOfflineModelConfig(Napi::Object obj) {
SherpaOnnxOfflineModelConfig c;
memset(&c, 0, sizeof(c));
if (!obj.Has("modelConfig") || !obj.Get("modelConfig").IsObject()) {
return c;
}
Napi::Object o = obj.Get("modelConfig").As<Napi::Object>();
c.transducer = GetOfflineTransducerModelConfig(o);
c.paraformer = GetOfflineParaformerModelConfig(o);
c.nemo_ctc = GetOfflineNeMoCtcModelConfig(o);
c.whisper = GetOfflineWhisperModelConfig(o);
c.tdnn = GetOfflineTdnnModelConfig(o);
if (o.Has("tokens") && o.Get("tokens").IsString()) {
Napi::String tokens = o.Get("tokens").As<Napi::String>();
std::string s = tokens.Utf8Value();
char *p = new char[s.size() + 1];
std::copy(s.begin(), s.end(), p);
p[s.size()] = 0;
c.tokens = p;
}
if (o.Has("numThreads") && o.Get("numThreads").IsNumber()) {
c.num_threads = o.Get("numThreads").As<Napi::Number>().Int32Value();
}
if (o.Has("debug") &&
(o.Get("debug").IsNumber() || o.Get("debug").IsBoolean())) {
if (o.Get("debug").IsBoolean()) {
c.debug = o.Get("debug").As<Napi::Boolean>().Value();
} else {
c.debug = o.Get("debug").As<Napi::Number>().Int32Value();
}
}
if (o.Has("provider") && o.Get("provider").IsString()) {
Napi::String provider = o.Get("provider").As<Napi::String>();
std::string s = provider.Utf8Value();
char *p = new char[s.size() + 1];
std::copy(s.begin(), s.end(), p);
p[s.size()] = 0;
c.provider = p;
}
if (o.Has("modelType") && o.Get("modelType").IsString()) {
Napi::String model_type = o.Get("modelType").As<Napi::String>();
std::string s = model_type.Utf8Value();
char *p = new char[s.size() + 1];
std::copy(s.begin(), s.end(), p);
p[s.size()] = 0;
c.model_type = p;
}
return c;
}
static SherpaOnnxOfflineLMConfig GetOfflineLMConfig(Napi::Object obj) {
SherpaOnnxOfflineLMConfig c;
memset(&c, 0, sizeof(c));
if (!obj.Has("lmConfig") || !obj.Get("lmConfig").IsObject()) {
return c;
}
Napi::Object o = obj.Get("lmConfig").As<Napi::Object>();
if (o.Has("model") && o.Get("model").IsString()) {
Napi::String model = o.Get("model").As<Napi::String>();
std::string s = model.Utf8Value();
char *p = new char[s.size() + 1];
std::copy(s.begin(), s.end(), p);
p[s.size()] = 0;
c.model = p;
}
if (o.Has("scale") && o.Get("scale").IsNumber()) {
c.scale = o.Get("scale").As<Napi::Number>().FloatValue();
}
return c;
}
static Napi::External<SherpaOnnxOfflineRecognizer>
CreateOfflineRecognizerWrapper(const Napi::CallbackInfo &info) {
Napi::Env env = info.Env();
if (info.Length() != 1) {
std::ostringstream os;
os << "Expect only 1 argument. Given: " << info.Length();
Napi::TypeError::New(env, os.str()).ThrowAsJavaScriptException();
return {};
}
if (!info[0].IsObject()) {
Napi::TypeError::New(env, "Expect an object as the argument")
.ThrowAsJavaScriptException();
return {};
}
Napi::Object o = info[0].As<Napi::Object>();
SherpaOnnxOfflineRecognizerConfig c;
memset(&c, 0, sizeof(c));
c.feat_config = GetFeatureConfig(o);
c.model_config = GetOfflineModelConfig(o);
c.lm_config = GetOfflineLMConfig(o);
if (o.Has("decodingMethod") && o.Get("decodingMethod").IsString()) {
Napi::String decoding_method = o.Get("decodingMethod").As<Napi::String>();
std::string s = decoding_method.Utf8Value();
char *p = new char[s.size() + 1];
std::copy(s.begin(), s.end(), p);
p[s.size()] = 0;
c.decoding_method = p;
}
if (o.Has("maxActivePaths") && o.Get("maxActivePaths").IsNumber()) {
c.max_active_paths =
o.Get("maxActivePaths").As<Napi::Number>().Int32Value();
}
if (o.Has("hotwordsFile") && o.Get("hotwordsFile").IsString()) {
Napi::String hotwords_file = o.Get("hotwordsFile").As<Napi::String>();
std::string s = hotwords_file.Utf8Value();
char *p = new char[s.size() + 1];
std::copy(s.begin(), s.end(), p);
p[s.size()] = 0;
c.hotwords_file = p;
}
if (o.Has("hotwordsScore") && o.Get("hotwordsScore").IsNumber()) {
c.hotwords_score = o.Get("hotwordsScore").As<Napi::Number>().FloatValue();
}
SherpaOnnxOfflineRecognizer *recognizer = CreateOfflineRecognizer(&c);
if (c.model_config.transducer.encoder) {
delete[] c.model_config.transducer.encoder;
}
if (c.model_config.transducer.decoder) {
delete[] c.model_config.transducer.decoder;
}
if (c.model_config.transducer.joiner) {
delete[] c.model_config.transducer.joiner;
}
if (c.model_config.paraformer.model) {
delete[] c.model_config.paraformer.model;
}
if (c.model_config.nemo_ctc.model) {
delete[] c.model_config.nemo_ctc.model;
}
if (c.model_config.whisper.encoder) {
delete[] c.model_config.whisper.encoder;
}
if (c.model_config.whisper.decoder) {
delete[] c.model_config.whisper.decoder;
}
if (c.model_config.whisper.language) {
delete[] c.model_config.whisper.language;
}
if (c.model_config.whisper.task) {
delete[] c.model_config.whisper.task;
}
if (c.model_config.tdnn.model) {
delete[] c.model_config.tdnn.model;
}
if (c.model_config.tokens) {
delete[] c.model_config.tokens;
}
if (c.model_config.provider) {
delete[] c.model_config.provider;
}
if (c.model_config.model_type) {
delete[] c.model_config.model_type;
}
if (c.lm_config.model) {
delete[] c.lm_config.model;
}
if (c.decoding_method) {
delete[] c.decoding_method;
}
if (c.hotwords_file) {
delete[] c.hotwords_file;
}
if (!recognizer) {
Napi::TypeError::New(env, "Please check your config!")
.ThrowAsJavaScriptException();
return {};
}
return Napi::External<SherpaOnnxOfflineRecognizer>::New(
env, recognizer,
[](Napi::Env env, SherpaOnnxOfflineRecognizer *recognizer) {
DestroyOfflineRecognizer(recognizer);
});
}
static Napi::External<SherpaOnnxOfflineStream> CreateOfflineStreamWrapper(
const Napi::CallbackInfo &info) {
Napi::Env env = info.Env();
if (info.Length() != 1) {
std::ostringstream os;
os << "Expect only 1 argument. Given: " << info.Length();
Napi::TypeError::New(env, os.str()).ThrowAsJavaScriptException();
return {};
}
if (!info[0].IsExternal()) {
Napi::TypeError::New(
env,
"You should pass an offline recognizer pointer as the only argument")
.ThrowAsJavaScriptException();
return {};
}
SherpaOnnxOfflineRecognizer *recognizer =
info[0].As<Napi::External<SherpaOnnxOfflineRecognizer>>().Data();
SherpaOnnxOfflineStream *stream = CreateOfflineStream(recognizer);
return Napi::External<SherpaOnnxOfflineStream>::New(
env, stream, [](Napi::Env env, SherpaOnnxOfflineStream *stream) {
DestroyOfflineStream(stream);
});
}
static void AcceptWaveformOfflineWrapper(const Napi::CallbackInfo &info) {
Napi::Env env = info.Env();
if (info.Length() != 2) {
std::ostringstream os;
os << "Expect only 2 arguments. Given: " << info.Length();
Napi::TypeError::New(env, os.str()).ThrowAsJavaScriptException();
return;
}
if (!info[0].IsExternal()) {
Napi::TypeError::New(env, "Argument 0 should be an online stream pointer.")
.ThrowAsJavaScriptException();
return;
}
SherpaOnnxOfflineStream *stream =
info[0].As<Napi::External<SherpaOnnxOfflineStream>>().Data();
if (!info[1].IsObject()) {
Napi::TypeError::New(env, "Argument 1 should be an object")
.ThrowAsJavaScriptException();
return;
}
Napi::Object obj = info[1].As<Napi::Object>();
if (!obj.Has("samples")) {
Napi::TypeError::New(env, "The argument object should have a field samples")
.ThrowAsJavaScriptException();
return;
}
if (!obj.Get("samples").IsTypedArray()) {
Napi::TypeError::New(env, "The object['samples'] should be a typed array")
.ThrowAsJavaScriptException();
return;
}
if (!obj.Has("sampleRate")) {
Napi::TypeError::New(env,
"The argument object should have a field sampleRate")
.ThrowAsJavaScriptException();
return;
}
if (!obj.Get("sampleRate").IsNumber()) {
Napi::TypeError::New(env, "The object['samples'] should be a number")
.ThrowAsJavaScriptException();
return;
}
Napi::Float32Array samples = obj.Get("samples").As<Napi::Float32Array>();
int32_t sample_rate = obj.Get("sampleRate").As<Napi::Number>().Int32Value();
AcceptWaveformOffline(stream, sample_rate, samples.Data(),
samples.ElementLength());
}
static void DecodeOfflineStreamWrapper(const Napi::CallbackInfo &info) {
Napi::Env env = info.Env();
if (info.Length() != 2) {
std::ostringstream os;
os << "Expect only 2 arguments. Given: " << info.Length();
Napi::TypeError::New(env, os.str()).ThrowAsJavaScriptException();
return;
}
if (!info[0].IsExternal()) {
Napi::TypeError::New(env,
"Argument 0 should be an offline recognizer pointer.")
.ThrowAsJavaScriptException();
return;
}
if (!info[1].IsExternal()) {
Napi::TypeError::New(env, "Argument 1 should be an offline stream pointer.")
.ThrowAsJavaScriptException();
return;
}
SherpaOnnxOfflineRecognizer *recognizer =
info[0].As<Napi::External<SherpaOnnxOfflineRecognizer>>().Data();
SherpaOnnxOfflineStream *stream =
info[1].As<Napi::External<SherpaOnnxOfflineStream>>().Data();
DecodeOfflineStream(recognizer, stream);
}
static Napi::String GetOfflineStreamResultAsJsonWrapper(
const Napi::CallbackInfo &info) {
Napi::Env env = info.Env();
if (info.Length() != 1) {
std::ostringstream os;
os << "Expect only 1 argument. Given: " << info.Length();
Napi::TypeError::New(env, os.str()).ThrowAsJavaScriptException();
return {};
}
if (!info[0].IsExternal()) {
Napi::TypeError::New(env, "Argument 0 should be an online stream pointer.")
.ThrowAsJavaScriptException();
return {};
}
SherpaOnnxOfflineStream *stream =
info[0].As<Napi::External<SherpaOnnxOfflineStream>>().Data();
const char *json = GetOfflineStreamResultAsJson(stream);
Napi::String s = Napi::String::New(env, json);
DestroyOfflineStreamResultJson(json);
return s;
}
void InitNonStreamingAsr(Napi::Env env, Napi::Object exports) {
exports.Set(Napi::String::New(env, "createOfflineRecognizer"),
Napi::Function::New(env, CreateOfflineRecognizerWrapper));
exports.Set(Napi::String::New(env, "createOfflineStream"),
Napi::Function::New(env, CreateOfflineStreamWrapper));
exports.Set(Napi::String::New(env, "acceptWaveformOffline"),
Napi::Function::New(env, AcceptWaveformOfflineWrapper));
exports.Set(Napi::String::New(env, "decodeOfflineStream"),
Napi::Function::New(env, DecodeOfflineStreamWrapper));
exports.Set(Napi::String::New(env, "getOfflineStreamResultAsJson"),
Napi::Function::New(env, GetOfflineStreamResultAsJsonWrapper));
}
... ...
... ... @@ -4,15 +4,21 @@
#include "napi.h" // NOLINT
void InitStreamingAsr(Napi::Env env, Napi::Object exports);
void InitNonStreamingAsr(Napi::Env env, Napi::Object exports);
void InitVad(Napi::Env env, Napi::Object exports);
void InitWaveReader(Napi::Env env, Napi::Object exports);
void InitWaveWriter(Napi::Env env, Napi::Object exports);
void InitVad(Napi::Env env, Napi::Object exports);
Napi::Object Init(Napi::Env env, Napi::Object exports) {
InitStreamingAsr(env, exports);
InitNonStreamingAsr(env, exports);
InitVad(env, exports);
InitWaveReader(env, exports);
InitWaveWriter(env, exports);
InitVad(env, exports);
return exports;
}
... ...
... ... @@ -13,7 +13,7 @@
}
};
*/
static SherpaOnnxFeatureConfig GetFeatureConfig(Napi::Object obj) {
SherpaOnnxFeatureConfig GetFeatureConfig(Napi::Object obj) {
SherpaOnnxFeatureConfig config;
memset(&config, 0, sizeof(config));
... ... @@ -113,6 +113,39 @@ GetOnlineZipformer2CtcModelConfig(Napi::Object obj) {
return config;
}
static SherpaOnnxOnlineParaformerModelConfig GetOnlineParaformerModelConfig(
Napi::Object obj) {
SherpaOnnxOnlineParaformerModelConfig config;
memset(&config, 0, sizeof(config));
if (!obj.Has("paraformer") || !obj.Get("paraformer").IsObject()) {
return config;
}
Napi::Object o = obj.Get("paraformer").As<Napi::Object>();
if (o.Has("encoder") && o.Get("encoder").IsString()) {
Napi::String encoder = o.Get("encoder").As<Napi::String>();
std::string s = encoder.Utf8Value();
char *p = new char[s.size() + 1];
std::copy(s.begin(), s.end(), p);
p[s.size()] = 0;
config.encoder = p;
}
if (o.Has("decoder") && o.Get("decoder").IsString()) {
Napi::String decoder = o.Get("decoder").As<Napi::String>();
std::string s = decoder.Utf8Value();
char *p = new char[s.size() + 1];
std::copy(s.begin(), s.end(), p);
p[s.size()] = 0;
config.decoder = p;
}
return config;
}
static SherpaOnnxOnlineModelConfig GetOnlineModelConfig(Napi::Object obj) {
SherpaOnnxOnlineModelConfig config;
memset(&config, 0, sizeof(config));
... ... @@ -124,6 +157,7 @@ static SherpaOnnxOnlineModelConfig GetOnlineModelConfig(Napi::Object obj) {
Napi::Object o = obj.Get("modelConfig").As<Napi::Object>();
config.transducer = GetOnlineTransducerModelConfig(o);
config.paraformer = GetOnlineParaformerModelConfig(o);
config.zipformer2_ctc = GetOnlineZipformer2CtcModelConfig(o);
if (o.Has("tokens") && o.Get("tokens").IsString()) {
... ... @@ -290,35 +324,6 @@ static Napi::External<SherpaOnnxOnlineRecognizer> CreateOnlineRecognizerWrapper(
c.ctc_fst_decoder_config = GetCtcFstDecoderConfig(config);
#if 0
printf("encoder: %s\n", c.model_config.transducer.encoder
? c.model_config.transducer.encoder
: "no");
printf("decoder: %s\n", c.model_config.transducer.decoder
? c.model_config.transducer.decoder
: "no");
printf("joiner: %s\n", c.model_config.transducer.joiner
? c.model_config.transducer.joiner
: "no");
printf("tokens: %s\n", c.model_config.tokens ? c.model_config.tokens : "no");
printf("num_threads: %d\n", c.model_config.num_threads);
printf("provider: %s\n",
c.model_config.provider ? c.model_config.provider : "no");
printf("debug: %d\n", c.model_config.debug);
printf("model_type: %s\n",
c.model_config.model_type ? c.model_config.model_type : "no");
printf("decoding_method: %s\n", c.decoding_method ? c.decoding_method : "no");
printf("max_active_paths: %d\n", c.max_active_paths);
printf("enable_endpoint: %d\n", c.enable_endpoint);
printf("rule1_min_trailing_silence: %.3f\n", c.rule1_min_trailing_silence);
printf("rule2_min_trailing_silence: %.3f\n", c.rule2_min_trailing_silence);
printf("rule3_min_utterance_length: %.3f\n", c.rule3_min_utterance_length);
printf("hotwords_file: %s\n", c.hotwords_file ? c.hotwords_file : "no");
printf("hotwords_score: %.3f\n", c.hotwords_score);
#endif
SherpaOnnxOnlineRecognizer *recognizer = CreateOnlineRecognizer(&c);
if (c.model_config.transducer.encoder) {
... ... @@ -333,6 +338,14 @@ static Napi::External<SherpaOnnxOnlineRecognizer> CreateOnlineRecognizerWrapper(
delete[] c.model_config.transducer.joiner;
}
if (c.model_config.paraformer.encoder) {
delete[] c.model_config.paraformer.encoder;
}
if (c.model_config.paraformer.decoder) {
delete[] c.model_config.paraformer.decoder;
}
if (c.model_config.zipformer2_ctc.model) {
delete[] c.model_config.zipformer2_ctc.model;
}
... ... @@ -389,7 +402,8 @@ static Napi::External<SherpaOnnxOnlineStream> CreateOnlineStreamWrapper(
if (!info[0].IsExternal()) {
Napi::TypeError::New(
env, "You should pass a recognizer pointer as the only argument")
env,
"You should pass an online recognizer pointer as the only argument")
.ThrowAsJavaScriptException();
return {};
... ...