Fangjun Kuang
Committed by GitHub

Add Javascript (WebAssembly) API for Dolphin CTC models (#2093)

... ... @@ -9,6 +9,13 @@ git status
ls -lh
ls -lh node_modules
# asr with offline dolphin ctc
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02.tar.bz2
tar xvf sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02.tar.bz2
rm sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02.tar.bz2
node ./test-offline-dolphin-ctc.js
rm -rf sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02
# speech enhancement
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/speech-enhancement-models/gtcrn_simple.onnx
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/speech-enhancement-models/inp_16k.wav
... ... @@ -56,7 +63,7 @@ curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/m
tar xvf matcha-icefall-en_US-ljspeech.tar.bz2
rm matcha-icefall-en_US-ljspeech.tar.bz2
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/vocoder-models/vocos-22khz-univ.onnx
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/vocoder-models/vocos-22khz-univ.onnx
node ./test-offline-tts-matcha-en.js
... ...
... ... @@ -21,8 +21,8 @@ jobs:
fail-fast: false
matrix:
os: [ubuntu-latest]
total: ["8"]
index: ["0", "1", "2", "3", "4", "5", "6", "7"]
total: ["11"]
index: ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10"]
steps:
- uses: actions/checkout@v4
... ...
... ... @@ -119,6 +119,7 @@ We also have spaces built using WebAssembly. They are listed below:
|VAD + speech recognition (Chinese 多种方言) with a [TeleSpeech-ASR][TeleSpeech-ASR] CTC model|[Click me][wasm-hf-vad-asr-zh-telespeech]| [地址][wasm-ms-vad-asr-zh-telespeech]|
|VAD + speech recognition (English + Chinese, 及多种中文方言) with Paraformer-large |[Click me][wasm-hf-vad-asr-zh-en-paraformer-large]| [地址][wasm-ms-vad-asr-zh-en-paraformer-large]|
|VAD + speech recognition (English + Chinese, 及多种中文方言) with Paraformer-small |[Click me][wasm-hf-vad-asr-zh-en-paraformer-small]| [地址][wasm-ms-vad-asr-zh-en-paraformer-small]|
|VAD + speech recognition (多语种及多种中文方言) with [Dolphin][Dolphin]-base |[Click me][wasm-hf-vad-asr-multi-lang-dolphin-base]| [地址][wasm-ms-vad-asr-multi-lang-dolphin-base]|
|Speech synthesis (English) |[Click me][wasm-hf-tts-piper-en]| [地址][wasm-ms-tts-piper-en]|
|Speech synthesis (German) |[Click me][wasm-hf-tts-piper-de]| [地址][wasm-ms-tts-piper-de]|
|Speaker diarization |[Click me][wasm-hf-speaker-diarization]|[地址][wasm-ms-speaker-diarization]|
... ... @@ -390,6 +391,10 @@ It uses TTS from sherpa-onnx. See also [✨ Speak command that uses the new glob
[wasm-ms-vad-asr-zh-en-paraformer-large]: https://www.modelscope.cn/studios/k2-fsa/web-assembly-vad-asr-sherpa-onnx-zh-en-paraformer
[wasm-hf-vad-asr-zh-en-paraformer-small]: https://huggingface.co/spaces/k2-fsa/web-assembly-vad-asr-sherpa-onnx-zh-en-paraformer-small
[wasm-ms-vad-asr-zh-en-paraformer-small]: https://www.modelscope.cn/studios/k2-fsa/web-assembly-vad-asr-sherpa-onnx-zh-en-paraformer-small
[Dolphin]: https://github.com/DataoceanAI/Dolphin
[wasm-ms-vad-asr-multi-lang-dolphin-base]: https://modelscope.cn/studios/csukuangfj/web-assembly-vad-asr-sherpa-onnx-multi-lang-dophin-ctc
[wasm-hf-vad-asr-multi-lang-dolphin-base]: https://huggingface.co/spaces/k2-fsa/web-assembly-vad-asr-sherpa-onnx-multi-lang-dophin-ctc
[wasm-hf-tts-piper-en]: https://huggingface.co/spaces/k2-fsa/web-assembly-tts-sherpa-onnx-en
[wasm-ms-tts-piper-en]: https://modelscope.cn/studios/k2-fsa/web-assembly-tts-sherpa-onnx-en
[wasm-hf-tts-piper-de]: https://huggingface.co/spaces/k2-fsa/web-assembly-tts-sherpa-onnx-de
... ...
... ... @@ -140,6 +140,20 @@ node ./test-offline-tts-vits-zh.js
In the following, we demonstrate how to decode files and how to perform
speech recognition with a microphone with `nodejs`.
## ./test-offline-dolphin-ctc.js
[./test-offline-dolphin-ctc.js](./test-offline-dolphin-ctc.js) demonstrates
how to decode a file with a [Dolphin](https://github.com/DataoceanAI/Dolphin) CTC model.
You can use the following command to run it:
```bash
wget -q https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02.tar.bz2
tar xvf sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02.tar.bz2
rm sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02.tar.bz2
node ./test-offline-dolphin-ctc.js
```
## ./test-offline-nemo-ctc.js
[./test-offline-nemo-ctc.js](./test-offline-nemo-ctc.js) demonstrates
... ...
// Copyright (c) 2025 Xiaomi Corporation (authors: Fangjun Kuang)
//
const fs = require('fs');
const {Readable} = require('stream');
const wav = require('wav');
const sherpa_onnx = require('sherpa-onnx');
function createOfflineRecognizer() {
let config = {
modelConfig: {
dolphin: {
model:
'./sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02/model.int8.onnx',
},
tokens:
'./sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02/tokens.txt',
}
};
return sherpa_onnx.createOfflineRecognizer(config);
}
const recognizer = createOfflineRecognizer();
const stream = recognizer.createStream();
const waveFilename =
'./sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02/test_wavs/0.wav';
const wave = sherpa_onnx.readWave(waveFilename);
stream.acceptWaveform(wave.sampleRate, wave.samples);
recognizer.decode(stream);
const text = recognizer.getResult(stream).text;
console.log(text);
stream.free();
recognizer.free();
... ...
... ... @@ -197,6 +197,21 @@ def get_models():
git diff
""",
),
Model(
model_name="sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02",
hf="k2-fsa/web-assembly-vad-asr-sherpa-onnx-multi-lang-dophin-ctc",
ms="csukuangfj/web-assembly-vad-asr-sherpa-onnx-multi-lang-dophin-ctc",
short_name="vad-asr-multi_lang-dolphin_ctc",
cmd="""
pushd $model_name
mv model.int8.onnx ../dolphin.onnx
mv tokens.txt ../
popd
rm -rf $model_name
sed -i.bak 's%Zipformer%<a href="https://github.com/DataoceanAI/Dolphin">Dolphin</a> (多种中文方言及非常多种语言)%g' ../index.html
git diff
""",
),
]
return models
... ...
... ... @@ -39,6 +39,10 @@ function freeConfig(config, Module) {
freeConfig(config.fireRedAsr, Module)
}
if ('dolphin' in config) {
freeConfig(config.dolphin, Module)
}
if ('moonshine' in config) {
freeConfig(config.moonshine, Module)
}
... ... @@ -562,6 +566,23 @@ function initSherpaOnnxOfflineNemoEncDecCtcModelConfig(config, Module) {
}
}
function initSherpaOnnxOfflineDolphinModelConfig(config, Module) {
const n = Module.lengthBytesUTF8(config.model || '') + 1;
const buffer = Module._malloc(n);
const len = 1 * 4; // 1 pointer
const ptr = Module._malloc(len);
Module.stringToUTF8(config.model || '', buffer, n);
Module.setValue(ptr, buffer, 'i8*');
return {
buffer: buffer, ptr: ptr, len: len,
}
}
function initSherpaOnnxOfflineWhisperModelConfig(config, Module) {
const encoderLen = Module.lengthBytesUTF8(config.encoder || '') + 1;
const decoderLen = Module.lengthBytesUTF8(config.decoder || '') + 1;
... ... @@ -769,6 +790,12 @@ function initSherpaOnnxOfflineModelConfig(config, Module) {
};
}
if (!('dolphin' in config)) {
config.dolphin = {
model: '',
};
}
if (!('whisper' in config)) {
config.whisper = {
encoder: '',
... ... @@ -832,8 +859,12 @@ function initSherpaOnnxOfflineModelConfig(config, Module) {
const fireRedAsr =
initSherpaOnnxOfflineFireRedAsrModelConfig(config.fireRedAsr, Module);
const dolphin =
initSherpaOnnxOfflineDolphinModelConfig(config.dolphin, Module);
const len = transducer.len + paraformer.len + nemoCtc.len + whisper.len +
tdnn.len + 8 * 4 + senseVoice.len + moonshine.len + fireRedAsr.len;
tdnn.len + 8 * 4 + senseVoice.len + moonshine.len + fireRedAsr.len +
dolphin.len;
const ptr = Module._malloc(len);
... ... @@ -932,10 +963,14 @@ function initSherpaOnnxOfflineModelConfig(config, Module) {
Module._CopyHeap(fireRedAsr.ptr, fireRedAsr.len, ptr + offset);
offset += fireRedAsr.len;
Module._CopyHeap(dolphin.ptr, dolphin.len, ptr + offset);
offset += dolphin.len;
return {
buffer: buffer, ptr: ptr, len: len, transducer: transducer,
paraformer: paraformer, nemoCtc: nemoCtc, whisper: whisper, tdnn: tdnn,
senseVoice: senseVoice, moonshine: moonshine, fireRedAsr: fireRedAsr
senseVoice: senseVoice, moonshine: moonshine, fireRedAsr: fireRedAsr,
dolphin: dolphin
}
}
... ...
... ... @@ -13,6 +13,7 @@ extern "C" {
static_assert(sizeof(SherpaOnnxOfflineTransducerModelConfig) == 3 * 4, "");
static_assert(sizeof(SherpaOnnxOfflineParaformerModelConfig) == 4, "");
static_assert(sizeof(SherpaOnnxOfflineDolphinModelConfig) == 4, "");
static_assert(sizeof(SherpaOnnxOfflineNemoEncDecCtcModelConfig) == 4, "");
static_assert(sizeof(SherpaOnnxOfflineWhisperModelConfig) == 5 * 4, "");
static_assert(sizeof(SherpaOnnxOfflineFireRedAsrModelConfig) == 2 * 4, "");
... ... @@ -29,7 +30,8 @@ static_assert(sizeof(SherpaOnnxOfflineModelConfig) ==
sizeof(SherpaOnnxOfflineTdnnModelConfig) + 8 * 4 +
sizeof(SherpaOnnxOfflineSenseVoiceModelConfig) +
sizeof(SherpaOnnxOfflineMoonshineModelConfig) +
sizeof(SherpaOnnxOfflineFireRedAsrModelConfig),
sizeof(SherpaOnnxOfflineFireRedAsrModelConfig) +
sizeof(SherpaOnnxOfflineDolphinModelConfig),
"");
static_assert(sizeof(SherpaOnnxFeatureConfig) == 2 * 4, "");
... ... @@ -73,6 +75,7 @@ void PrintOfflineRecognizerConfig(SherpaOnnxOfflineRecognizerConfig *config) {
auto sense_voice = &model_config->sense_voice;
auto moonshine = &model_config->moonshine;
auto fire_red_asr = &model_config->fire_red_asr;
auto dolphin = &model_config->dolphin;
fprintf(stdout, "----------offline transducer model config----------\n");
fprintf(stdout, "encoder: %s\n", transducer->encoder);
... ... @@ -110,6 +113,9 @@ void PrintOfflineRecognizerConfig(SherpaOnnxOfflineRecognizerConfig *config) {
fprintf(stdout, "encoder: %s\n", fire_red_asr->encoder);
fprintf(stdout, "decoder: %s\n", fire_red_asr->decoder);
fprintf(stdout, "----------offline Dolphin model config----------\n");
fprintf(stdout, "model: %s\n", dolphin->model);
fprintf(stdout, "tokens: %s\n", model_config->tokens);
fprintf(stdout, "num_threads: %d\n", model_config->num_threads);
fprintf(stdout, "provider: %s\n", model_config->provider);
... ...
... ... @@ -73,48 +73,50 @@ function createOfflineRecognizerSenseVoice() {}
function initOfflineRecognizer() {
let config = {
modelConfig : {
debug : 1,
tokens : './tokens.txt',
modelConfig: {
debug: 1,
tokens: './tokens.txt',
},
};
if (fileExists('sense-voice.onnx') == 1) {
config.modelConfig.senseVoice = {
model : './sense-voice.onnx',
useInverseTextNormalization : 1,
model: './sense-voice.onnx',
useInverseTextNormalization: 1,
};
} else if (fileExists('whisper-encoder.onnx')) {
config.modelConfig.whisper = {
encoder : './whisper-encoder.onnx',
decoder : './whisper-decoder.onnx',
encoder: './whisper-encoder.onnx',
decoder: './whisper-decoder.onnx',
};
} else if (fileExists('transducer-encoder.onnx')) {
config.modelConfig.transducer = {
encoder : './transducer-encoder.onnx',
decoder : './transducer-decoder.onnx',
joiner : './transducer-joiner.onnx',
encoder: './transducer-encoder.onnx',
decoder: './transducer-decoder.onnx',
joiner: './transducer-joiner.onnx',
};
config.modelConfig.modelType = 'transducer';
} else if (fileExists('nemo-transducer-encoder.onnx')) {
config.modelConfig.transducer = {
encoder : './nemo-transducer-encoder.onnx',
decoder : './nemo-transducer-decoder.onnx',
joiner : './nemo-transducer-joiner.onnx',
encoder: './nemo-transducer-encoder.onnx',
decoder: './nemo-transducer-decoder.onnx',
joiner: './nemo-transducer-joiner.onnx',
};
config.modelConfig.modelType = 'nemo_transducer';
} else if (fileExists('paraformer.onnx')) {
config.modelConfig.paraformer = {
model : './paraformer.onnx',
model: './paraformer.onnx',
};
} else if (fileExists('telespeech.onnx')) {
config.modelConfig.telespeechCtc = './telespeech.onnx';
} else if (fileExists('moonshine-preprocessor.onnx')) {
config.modelConfig.moonshine = {
preprocessor : './moonshine-preprocessor.onnx',
encoder : './moonshine-encoder.onnx',
uncachedDecoder : './moonshine-uncached-decoder.onnx',
cachedDecoder : './moonshine-cached-decoder.onnx'
preprocessor: './moonshine-preprocessor.onnx',
encoder: './moonshine-encoder.onnx',
uncachedDecoder: './moonshine-uncached-decoder.onnx',
cachedDecoder: './moonshine-cached-decoder.onnx'
};
} else if (fileExists('dolphin.onnx')) {
config.modelConfig.dolphin = {model: './dolphin.onnx'};
} else {
console.log('Please specify a model.');
alert('Please specify a model.');
... ... @@ -133,7 +135,7 @@ Module.locateFile = function(path, scriptDirectory = '') {
Module.setStatus = function(status) {
console.log(`status ${status}`);
const statusElement = document.getElementById('status');
if (status == "Running...") {
if (status == 'Running...') {
status = 'Model downloaded. Initializing recongizer...'
}
statusElement.textContent = status;
... ... @@ -170,11 +172,11 @@ if (navigator.mediaDevices.getUserMedia) {
console.log('getUserMedia supported.');
// see https://w3c.github.io/mediacapture-main/#dom-mediadevices-getusermedia
const constraints = {audio : true};
const constraints = {audio: true};
let onSuccess = function(stream) {
if (!audioCtx) {
audioCtx = new AudioContext({sampleRate : expectedSampleRate});
audioCtx = new AudioContext({sampleRate: expectedSampleRate});
}
console.log(audioCtx);
recordSampleRate = audioCtx.sampleRate;
... ... @@ -330,8 +332,9 @@ if (navigator.mediaDevices.getUserMedia) {
};
};
let onError = function(
err) { console.log('The following error occured: ' + err); };
let onError = function(err) {
console.log('The following error occured: ' + err);
};
navigator.mediaDevices.getUserMedia(constraints).then(onSuccess, onError);
} else {
... ... @@ -387,7 +390,7 @@ function toWav(samples) {
offset += 2;
}
return new Blob([ view ], {type : 'audio/wav'});
return new Blob([view], {type: 'audio/wav'});
}
// this function is copied from
... ...