Fangjun Kuang
Committed by GitHub
... ... @@ -4,7 +4,6 @@ on:
push:
branches:
- apk
- android-demo-speaker-diarization-2
workflow_dispatch:
... ... @@ -76,6 +75,11 @@ jobs:
run: |
cd scripts/apk
total=${{ matrix.total }}
index=${{ matrix.index }}
python3 ./generate-speaker-diarization-apk-script.py --total $total --index $index
chmod +x build-apk-speaker-diarization.sh
mv -v ./build-apk-speaker-diarization.sh ../..
... ...
name: export-revai-segmentation-to-onnx
on:
workflow_dispatch:
concurrency:
group: export-revai-segmentation-to-onnx-${{ github.ref }}
cancel-in-progress: true
jobs:
export-revai-segmentation-to-onnx:
if: github.repository_owner == 'k2-fsa' || github.repository_owner == 'csukuangfj'
name: export revai segmentation models to ONNX
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [macos-latest]
python-version: ["3.10"]
steps:
- uses: actions/checkout@v4
- name: Setup Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- name: Install pyannote
shell: bash
run: |
pip install pyannote.audio onnx==1.15.0 onnxruntime==1.16.3
- name: Run
shell: bash
run: |
d=sherpa-onnx-reverb-diarization-v1
src=$PWD/$d
mkdir -p $src
pushd scripts/pyannote/segmentation
./run-revai.sh
cp ./*.onnx $src/
cp ./README.md $src/
cp ./LICENSE $src/
cp ./run-revai.sh $src/run.sh
cp ./*.py $src/
popd
ls -lh $d
tar cjfv $d.tar.bz2 $d
- name: Release
uses: svenstaro/upload-release-action@v2
with:
file_glob: true
file: ./*.tar.bz2
overwrite: true
repo_name: k2-fsa/sherpa-onnx
repo_token: ${{ secrets.UPLOAD_GH_SHERPA_ONNX_TOKEN }}
tag: speaker-segmentation-models
- name: Publish to huggingface
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
uses: nick-fields/retry@v3
with:
max_attempts: 20
timeout_seconds: 200
shell: bash
command: |
git config --global user.email "csukuangfj@gmail.com"
git config --global user.name "Fangjun Kuang"
d=sherpa-onnx-reverb-diarization-v1
export GIT_LFS_SKIP_SMUDGE=1
export GIT_CLONE_PROTECTION_ACTIVE=false
git clone https://huggingface.co/csukuangfj/$d huggingface
cp -v $d/* ./huggingface
cd huggingface
git lfs track "*.onnx"
git status
git add .
git status
git commit -m "add models"
git push https://csukuangfj:$HF_TOKEN@huggingface.co/csukuangfj/$d main
... ...
... ... @@ -31,15 +31,24 @@ log "====================x86===================="
mkdir -p apks
{% for model in model_list %}
pushd ./android/SherpaOnnxSpeakerDiarization/app/src/main/assets/
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/speaker-segmentation-models/sherpa-onnx-pyannote-segmentation-3-0.tar.bz2
tar xvf sherpa-onnx-pyannote-segmentation-3-0.tar.bz2
rm sherpa-onnx-pyannote-segmentation-3-0.tar.bz2
mv sherpa-onnx-pyannote-segmentation-3-0/model.onnx segmentation.onnx
rm -rf sherpa-onnx-pyannote-segmentation-3-0
ls -lh
model_name={{ model.model_name }}
short_name={{ model.short_name }}
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/speaker-recongition-models/3dspeaker_speech_eres2net_base_sv_zh-cn_3dspeaker_16k.onnx
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/speaker-segmentation-models/$model_name.tar.bz2
tar xvf $model_name.tar.bz2
rm $model_name.tar.bz2
mv $model_name/model.onnx segmentation.onnx
rm -rf $model_name
if [ ! -f 3dspeaker_speech_eres2net_base_sv_zh-cn_3dspeaker_16k.onnx ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/speaker-recongition-models/3dspeaker_speech_eres2net_base_sv_zh-cn_3dspeaker_16k.onnx
fi
echo "pwd: $PWD"
ls -lh
... ... @@ -65,9 +74,13 @@ for arch in arm64-v8a armeabi-v7a x86_64 x86; do
./gradlew build
popd
mv android/SherpaOnnxSpeakerDiarization/app/build/outputs/apk/debug/app-debug.apk ./apks/sherpa-onnx-${SHERPA_ONNX_VERSION}-$arch-speaker-diarization-pyannote_audio-3dspeaker.apk
mv android/SherpaOnnxSpeakerDiarization/app/build/outputs/apk/debug/app-debug.apk ./apks/sherpa-onnx-${SHERPA_ONNX_VERSION}-$arch-speaker-diarization-$short_name-3dspeaker.apk
ls -lh apks
rm -v ./android/SherpaOnnxSpeakerDiarization/app/src/main/jniLibs/$arch/*.so
done
rm -rf ./android/SherpaOnnxSpeakerDiarization/app/src/main/assets/segmentation.onnx
{% endfor %}
ls -lh apks
... ...
#!/usr/bin/env python3
import argparse
from dataclasses import dataclass
from typing import List
import jinja2
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--total",
type=int,
default=1,
help="Number of runners",
)
parser.add_argument(
"--index",
type=int,
default=0,
help="Index of the current runner",
)
return parser.parse_args()
@dataclass
class SpeakerSegmentationModel:
model_name: str
short_name: str = ""
def get_models() -> List[SpeakerSegmentationModel]:
models = [
SpeakerSegmentationModel(
model_name="sherpa-onnx-pyannote-segmentation-3-0",
short_name="pyannote_audio",
),
SpeakerSegmentationModel(
model_name="sherpa-onnx-reverb-diarization-v1",
short_name="revai_v1",
),
]
return models
def main():
args = get_args()
index = args.index
total = args.total
assert 0 <= index < total, (index, total)
all_model_list = get_models()
num_models = len(all_model_list)
num_per_runner = num_models // total
if num_per_runner <= 0:
raise ValueError(f"num_models: {num_models}, num_runners: {total}")
start = index * num_per_runner
end = start + num_per_runner
remaining = num_models - args.total * num_per_runner
print(f"{index}/{total}: {start}-{end}/{num_models}")
d = dict()
d["model_list"] = all_model_list[start:end]
if index < remaining:
s = args.total * num_per_runner + index
d["model_list"].append(all_model_list[s])
print(f"{s}/{num_models}")
filename_list = ["./build-apk-speaker-diarization.sh"]
for filename in filename_list:
environment = jinja2.Environment()
with open(f"{filename}.in") as f:
s = f.read()
template = environment.from_string(s)
s = template.render(**d)
with open(filename, "w") as f:
print(s, file=f)
if __name__ == "__main__":
main()
... ...
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
import os
from typing import Any, Dict
import onnx
... ... @@ -35,6 +37,8 @@ def add_meta_data(filename: str, meta_data: Dict[str, Any]):
def main():
# You can download ./pytorch_model.bin from
# https://hf-mirror.com/csukuangfj/pyannote-models/tree/main/segmentation-3.0
# or from
# https://huggingface.co/Revai/reverb-diarization-v1/tree/main
pt_filename = "./pytorch_model.bin"
model = Model.from_pretrained(pt_filename)
model.eval()
... ... @@ -94,6 +98,22 @@ def main():
receptive_field_size = int(model.receptive_field.duration * 16000)
receptive_field_shift = int(model.receptive_field.step * 16000)
is_revai = os.getenv("SHERPA_ONNX_IS_REVAI", "")
if is_revai == "":
url_1 = "https://huggingface.co/pyannote/segmentation-3.0"
url_2 = "https://huggingface.co/csukuangfj/pyannote-models/tree/main/segmentation-3.0"
license_url = (
"https://huggingface.co/pyannote/segmentation-3.0/blob/main/LICENSE"
)
model_author = "pyannote-audio"
else:
url_1 = "https://huggingface.co/Revai/reverb-diarization-v1"
url_2 = "https://huggingface.co/csukuangfj/sherpa-onnx-reverb-diarization-v1"
license_url = (
"https://huggingface.co/Revai/reverb-diarization-v1/blob/main/LICENSE"
)
model_author = "Revai"
meta_data = {
"num_speakers": len(model.specifications.classes),
"powerset_max_classes": model.specifications.powerset_max_classes,
... ... @@ -104,11 +124,11 @@ def main():
"receptive_field_shift": receptive_field_shift,
"model_type": "pyannote-segmentation-3.0",
"version": "1",
"model_author": "pyannote",
"model_author": model_author,
"maintainer": "k2-fsa",
"url_1": "https://huggingface.co/pyannote/segmentation-3.0",
"url_2": "https://huggingface.co/csukuangfj/pyannote-models/tree/main/segmentation-3.0",
"license": "https://huggingface.co/pyannote/segmentation-3.0/blob/main/LICENSE",
"url_1": url_1,
"url_2": url_2,
"license": license_url,
}
add_meta_data(filename=filename, meta_data=meta_data)
... ...
#!/usr/bin/env bash
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
python3 -m onnxruntime.quantization.preprocess --input model.onnx --output tmp.preprocessed.onnx
... ...
#!/usr/bin/env bash
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
export SHERPA_ONNX_IS_REVAI=1
set -ex
function install_pyannote() {
pip install pyannote.audio onnx onnxruntime
}
function download_test_files() {
curl -SL -O https://huggingface.co/Revai/reverb-diarization-v1/resolve/main/pytorch_model.bin
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/lei-jun-test.wav
}
install_pyannote
download_test_files
./export-onnx.py
./preprocess.sh
echo "----------torch----------"
./vad-torch.py
echo "----------onnx model.onnx----------"
./vad-onnx.py --model ./model.onnx --wav ./lei-jun-test.wav
echo "----------onnx model.int8.onnx----------"
./vad-onnx.py --model ./model.int8.onnx --wav ./lei-jun-test.wav
curl -SL -O https://huggingface.co/Revai/reverb-diarization-v1/resolve/main/LICENSE
cat >README.md << EOF
# Introduction
Models in this file are converted from
https://huggingface.co/Revai/reverb-diarization-v1/tree/main
Note that it is accessible under a non-commercial license.
Please see ./LICENSE for details.
See also
https://www.rev.com/blog/speech-to-text-technology/introducing-reverb-open-source-asr-diarization
EOF
... ...
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
"""
Please refer to
... ...
... ... @@ -216,6 +216,8 @@ def main():
is_active = classification[0] > onset
start = None
if is_active:
start = 0
scale = m.receptive_field_shift / m.sample_rate
scale_offset = m.receptive_field_size / m.sample_rate * 0.5
... ...