Toggle navigation
Toggle navigation
此项目
正在载入...
Sign in
xuning
/
sherpaonnx
转到一个项目
Toggle navigation
项目
群组
代码片段
帮助
Toggle navigation pinning
Project
Activity
Repository
Pipelines
Graphs
Issues
0
Merge Requests
0
Wiki
Network
Create a new issue
Builds
Commits
Authored by
Peakyxh
2024-10-24 22:04:51 +0800
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Committed by
GitHub
2024-10-24 22:04:51 +0800
Commit
2b40079faf756113f1a415cb39699f9489e1e316
2b40079f
1 parent
a5295aad
Add speaker identification with VAD and non-streaming ASR using ALSA (#1463)
显示空白字符变更
内嵌
并排对比
正在显示
1 个修改的文件
包含
494 行增加
和
0 行删除
python-api-examples/speaker-identification-with-vad-non-streaming-asr-alsa.py
python-api-examples/speaker-identification-with-vad-non-streaming-asr-alsa.py
0 → 100644
查看文件 @
2b40079
#!/usr/bin/env python3
"""
This script works only on Linux. It uses ALSA for recording.
This script shows how to use Python APIs for speaker identification with
a microphone, a VAD model, and a non-streaming ASR model.
Please see also ./generate-subtitles.py
Usage:
(1) Prepare a text file containing speaker related files.
Each line in the text file contains two columns. The first column is the
speaker name, while the second column contains the wave file of the speaker.
If the text file contains multiple wave files for the same speaker, then the
embeddings of these files are averaged.
An example text file is given below:
foo /path/to/a.wav
bar /path/to/b.wav
foo /path/to/c.wav
foobar /path/to/d.wav
Each wave file should contain only a single channel; the sample format
should be int16_t; the sample rate can be arbitrary.
(2) Download a model for computing speaker embeddings
Please visit
https://github.com/k2-fsa/sherpa-onnx/releases/tag/speaker-recongition-models
to download a model. An example is given below:
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/speaker-recongition-models/wespeaker_zh_cnceleb_resnet34.onnx
Note that `zh` means Chinese, while `en` means English.
(3) Download the VAD model
Please visit
https://github.com/snakers4/silero-vad/raw/master/src/silero_vad/data/silero_vad.onnx
to download silero_vad.onnx
For instance,
wget https://github.com/snakers4/silero-vad/raw/master/src/silero_vad/data/silero_vad.onnx
(4) Please refer to ./generate-subtitles.py
to download a non-streaming ASR model.
(5) Run this script
Assume the filename of the text file is speaker.txt.
python3 ./python-api-examples/speaker-identification-with-vad-non-streaming-asr.py
\
--silero-vad-model=/path/to/silero_vad.onnx
\
--speaker-file ./speaker.txt
\
--model ./wespeaker_zh_cnceleb_resnet34.onnx
"""
import
argparse
from
collections
import
defaultdict
from
pathlib
import
Path
from
typing
import
Dict
,
List
,
Tuple
import
numpy
as
np
import
sherpa_onnx
import
soundfile
as
sf
g_sample_rate
=
16000
def
register_non_streaming_asr_model_args
(
parser
):
parser
.
add_argument
(
"--tokens"
,
type
=
str
,
help
=
"Path to tokens.txt"
,
)
parser
.
add_argument
(
"--encoder"
,
default
=
""
,
type
=
str
,
help
=
"Path to the transducer encoder model"
,
)
parser
.
add_argument
(
"--decoder"
,
default
=
""
,
type
=
str
,
help
=
"Path to the transducer decoder model"
,
)
parser
.
add_argument
(
"--joiner"
,
default
=
""
,
type
=
str
,
help
=
"Path to the transducer joiner model"
,
)
parser
.
add_argument
(
"--paraformer"
,
default
=
""
,
type
=
str
,
help
=
"Path to the model.onnx from Paraformer"
,
)
parser
.
add_argument
(
"--wenet-ctc"
,
default
=
""
,
type
=
str
,
help
=
"Path to the CTC model.onnx from WeNet"
,
)
parser
.
add_argument
(
"--whisper-encoder"
,
default
=
""
,
type
=
str
,
help
=
"Path to whisper encoder model"
,
)
parser
.
add_argument
(
"--whisper-decoder"
,
default
=
""
,
type
=
str
,
help
=
"Path to whisper decoder model"
,
)
parser
.
add_argument
(
"--whisper-language"
,
default
=
""
,
type
=
str
,
help
=
"""It specifies the spoken language in the input file.
Example values: en, fr, de, zh, jp.
Available languages for multilingual models can be found at
https://github.com/openai/whisper/blob/main/whisper/tokenizer.py#L10
If not specified, we infer the language from the input audio file.
"""
,
)
parser
.
add_argument
(
"--whisper-task"
,
default
=
"transcribe"
,
choices
=
[
"transcribe"
,
"translate"
],
type
=
str
,
help
=
"""For multilingual models, if you specify translate, the output
will be in English.
"""
,
)
parser
.
add_argument
(
"--whisper-tail-paddings"
,
default
=-
1
,
type
=
int
,
help
=
"""Number of tail padding frames.
We have removed the 30-second constraint from whisper, so you need to
choose the amount of tail padding frames by yourself.
Use -1 to use a default value for tail padding.
"""
,
)
parser
.
add_argument
(
"--decoding-method"
,
type
=
str
,
default
=
"greedy_search"
,
help
=
"""Valid values are greedy_search and modified_beam_search.
modified_beam_search is valid only for transducer models.
"""
,
)
parser
.
add_argument
(
"--feature-dim"
,
type
=
int
,
default
=
80
,
help
=
"Feature dimension. Must match the one expected by the model"
,
)
def
get_args
():
parser
=
argparse
.
ArgumentParser
(
formatter_class
=
argparse
.
ArgumentDefaultsHelpFormatter
)
register_non_streaming_asr_model_args
(
parser
)
parser
.
add_argument
(
"--speaker-file"
,
type
=
str
,
required
=
True
,
help
=
"""Path to the speaker file. Read the help doc at the beginning of this
file for the format."""
,
)
parser
.
add_argument
(
"--model"
,
type
=
str
,
required
=
True
,
help
=
"Path to the speaker embedding model file."
,
)
parser
.
add_argument
(
"--silero-vad-model"
,
type
=
str
,
required
=
True
,
help
=
"Path to silero_vad.onnx"
,
)
parser
.
add_argument
(
"--threshold"
,
type
=
float
,
default
=
0.6
)
parser
.
add_argument
(
"--num-threads"
,
type
=
int
,
default
=
1
,
help
=
"Number of threads for neural network computation"
,
)
parser
.
add_argument
(
"--debug"
,
type
=
bool
,
default
=
False
,
help
=
"True to show debug messages"
,
)
parser
.
add_argument
(
"--provider"
,
type
=
str
,
default
=
"cpu"
,
help
=
"Valid values: cpu, cuda, coreml"
,
)
parser
.
add_argument
(
"--device-name"
,
type
=
str
,
required
=
True
,
help
=
"""
The device name specifies which microphone to use in case there are several
on your system. You can use
arecord -l
to find all available microphones on your computer. For instance, if it outputs
**** List of CAPTURE Hardware Devices ****
card 3: UACDemoV10 [UACDemoV1.0], device 0: USB Audio [USB Audio]
Subdevices: 1/1
Subdevice #0: subdevice #0
and if you want to select card 3 and device 0 on that card, please use:
plughw:3,0
as the device_name.
"""
,
)
return
parser
.
parse_args
()
def
assert_file_exists
(
filename
:
str
):
assert
Path
(
filename
)
.
is_file
(),
(
f
"{filename} does not exist!
\n
"
"Please refer to "
"https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html to download it"
)
def
create_recognizer
(
args
)
->
sherpa_onnx
.
OfflineRecognizer
:
if
args
.
encoder
:
assert
len
(
args
.
paraformer
)
==
0
,
args
.
paraformer
assert
len
(
args
.
wenet_ctc
)
==
0
,
args
.
wenet_ctc
assert
len
(
args
.
whisper_encoder
)
==
0
,
args
.
whisper_encoder
assert
len
(
args
.
whisper_decoder
)
==
0
,
args
.
whisper_decoder
assert_file_exists
(
args
.
encoder
)
assert_file_exists
(
args
.
decoder
)
assert_file_exists
(
args
.
joiner
)
recognizer
=
sherpa_onnx
.
OfflineRecognizer
.
from_transducer
(
encoder
=
args
.
encoder
,
decoder
=
args
.
decoder
,
joiner
=
args
.
joiner
,
tokens
=
args
.
tokens
,
num_threads
=
args
.
num_threads
,
sample_rate
=
args
.
sample_rate
,
feature_dim
=
args
.
feature_dim
,
decoding_method
=
args
.
decoding_method
,
debug
=
args
.
debug
,
)
elif
args
.
paraformer
:
assert
len
(
args
.
wenet_ctc
)
==
0
,
args
.
wenet_ctc
assert
len
(
args
.
whisper_encoder
)
==
0
,
args
.
whisper_encoder
assert
len
(
args
.
whisper_decoder
)
==
0
,
args
.
whisper_decoder
assert_file_exists
(
args
.
paraformer
)
recognizer
=
sherpa_onnx
.
OfflineRecognizer
.
from_paraformer
(
paraformer
=
args
.
paraformer
,
tokens
=
args
.
tokens
,
num_threads
=
args
.
num_threads
,
sample_rate
=
g_sample_rate
,
feature_dim
=
args
.
feature_dim
,
decoding_method
=
args
.
decoding_method
,
debug
=
args
.
debug
,
)
elif
args
.
wenet_ctc
:
assert
len
(
args
.
whisper_encoder
)
==
0
,
args
.
whisper_encoder
assert
len
(
args
.
whisper_decoder
)
==
0
,
args
.
whisper_decoder
assert_file_exists
(
args
.
wenet_ctc
)
recognizer
=
sherpa_onnx
.
OfflineRecognizer
.
from_wenet_ctc
(
model
=
args
.
wenet_ctc
,
tokens
=
args
.
tokens
,
num_threads
=
args
.
num_threads
,
sample_rate
=
args
.
sample_rate
,
feature_dim
=
args
.
feature_dim
,
decoding_method
=
args
.
decoding_method
,
debug
=
args
.
debug
,
)
elif
args
.
whisper_encoder
:
assert_file_exists
(
args
.
whisper_encoder
)
assert_file_exists
(
args
.
whisper_decoder
)
recognizer
=
sherpa_onnx
.
OfflineRecognizer
.
from_whisper
(
encoder
=
args
.
whisper_encoder
,
decoder
=
args
.
whisper_decoder
,
tokens
=
args
.
tokens
,
num_threads
=
args
.
num_threads
,
decoding_method
=
args
.
decoding_method
,
debug
=
args
.
debug
,
language
=
args
.
whisper_language
,
task
=
args
.
whisper_task
,
tail_paddings
=
args
.
whisper_tail_paddings
,
)
else
:
raise
ValueError
(
"Please specify at least one model"
)
return
recognizer
def
load_speaker_embedding_model
(
args
):
config
=
sherpa_onnx
.
SpeakerEmbeddingExtractorConfig
(
model
=
args
.
model
,
num_threads
=
args
.
num_threads
,
debug
=
args
.
debug
,
provider
=
args
.
provider
,
)
if
not
config
.
validate
():
raise
ValueError
(
f
"Invalid config. {config}"
)
extractor
=
sherpa_onnx
.
SpeakerEmbeddingExtractor
(
config
)
return
extractor
def
load_speaker_file
(
args
)
->
Dict
[
str
,
List
[
str
]]:
if
not
Path
(
args
.
speaker_file
)
.
is_file
():
raise
ValueError
(
f
"--speaker-file {args.speaker_file} does not exist"
)
ans
=
defaultdict
(
list
)
with
open
(
args
.
speaker_file
)
as
f
:
for
line
in
f
:
line
=
line
.
strip
()
if
not
line
:
continue
fields
=
line
.
split
()
if
len
(
fields
)
!=
2
:
raise
ValueError
(
f
"Invalid line: {line}. Fields: {fields}"
)
speaker_name
,
filename
=
fields
ans
[
speaker_name
]
.
append
(
filename
)
return
ans
def
load_audio
(
filename
:
str
)
->
Tuple
[
np
.
ndarray
,
int
]:
data
,
sample_rate
=
sf
.
read
(
filename
,
always_2d
=
True
,
dtype
=
"float32"
,
)
data
=
data
[:,
0
]
# use only the first channel
samples
=
np
.
ascontiguousarray
(
data
)
return
samples
,
sample_rate
def
compute_speaker_embedding
(
filenames
:
List
[
str
],
extractor
:
sherpa_onnx
.
SpeakerEmbeddingExtractor
,
)
->
np
.
ndarray
:
assert
len
(
filenames
)
>
0
,
"filenames is empty"
ans
=
None
for
filename
in
filenames
:
print
(
f
"processing {filename}"
)
samples
,
sample_rate
=
load_audio
(
filename
)
stream
=
extractor
.
create_stream
()
stream
.
accept_waveform
(
sample_rate
=
sample_rate
,
waveform
=
samples
)
stream
.
input_finished
()
assert
extractor
.
is_ready
(
stream
)
embedding
=
extractor
.
compute
(
stream
)
embedding
=
np
.
array
(
embedding
)
if
ans
is
None
:
ans
=
embedding
else
:
ans
+=
embedding
return
ans
/
len
(
filenames
)
def
main
():
args
=
get_args
()
print
(
args
)
device_name
=
args
.
device_name
print
(
f
"device_name: {device_name}"
)
alsa
=
sherpa_onnx
.
Alsa
(
device_name
)
recognizer
=
create_recognizer
(
args
)
extractor
=
load_speaker_embedding_model
(
args
)
speaker_file
=
load_speaker_file
(
args
)
manager
=
sherpa_onnx
.
SpeakerEmbeddingManager
(
extractor
.
dim
)
for
name
,
filename_list
in
speaker_file
.
items
():
embedding
=
compute_speaker_embedding
(
filenames
=
filename_list
,
extractor
=
extractor
,
)
status
=
manager
.
add
(
name
,
embedding
)
if
not
status
:
raise
RuntimeError
(
f
"Failed to register speaker {name}"
)
vad_config
=
sherpa_onnx
.
VadModelConfig
()
vad_config
.
silero_vad
.
model
=
args
.
silero_vad_model
vad_config
.
silero_vad
.
min_silence_duration
=
0.25
vad_config
.
silero_vad
.
min_speech_duration
=
0.25
vad_config
.
sample_rate
=
g_sample_rate
if
not
vad_config
.
validate
():
raise
ValueError
(
"Errors in vad config"
)
window_size
=
vad_config
.
silero_vad
.
window_size
vad
=
sherpa_onnx
.
VoiceActivityDetector
(
vad_config
,
buffer_size_in_seconds
=
100
)
samples_per_read
=
int
(
0.1
*
g_sample_rate
)
# 0.1 second = 100 ms
print
(
"Started! Please speak"
)
idx
=
0
buffer
=
[]
while
True
:
samples
=
alsa
.
read
(
samples_per_read
)
# a blocking read
samples
=
np
.
array
(
samples
)
buffer
=
np
.
concatenate
([
buffer
,
samples
])
while
len
(
buffer
)
>
window_size
:
vad
.
accept_waveform
(
buffer
[:
window_size
])
buffer
=
buffer
[
window_size
:]
while
not
vad
.
empty
():
if
len
(
vad
.
front
.
samples
)
<
0.5
*
g_sample_rate
:
# this segment is too short, skip it
vad
.
pop
()
continue
stream
=
extractor
.
create_stream
()
stream
.
accept_waveform
(
sample_rate
=
g_sample_rate
,
waveform
=
vad
.
front
.
samples
)
stream
.
input_finished
()
embedding
=
extractor
.
compute
(
stream
)
embedding
=
np
.
array
(
embedding
)
name
=
manager
.
search
(
embedding
,
threshold
=
args
.
threshold
)
if
not
name
:
name
=
"unknown"
# Now for non-streaming ASR
asr_stream
=
recognizer
.
create_stream
()
asr_stream
.
accept_waveform
(
sample_rate
=
g_sample_rate
,
waveform
=
vad
.
front
.
samples
)
recognizer
.
decode_stream
(
asr_stream
)
text
=
asr_stream
.
result
.
text
vad
.
pop
()
print
(
f
"
\r
{idx}-{name}: {text}"
)
idx
+=
1
if
__name__
==
"__main__"
:
try
:
main
()
except
KeyboardInterrupt
:
print
(
"
\n
Caught Ctrl + C. Exiting"
)
...
...
请
注册
或
登录
后发表评论