Fangjun Kuang
Committed by GitHub

Add VAD + Non-streaming ASR + microphone examples for Java API (#1046)

... ... @@ -63,6 +63,18 @@ The punctuation model supports both English and Chinese.
./run-vad-from-mic.sh
```
## VAD with a microphone + Non-streaming Paraformer for speech recognition
```bash
./run-vad-from-mic-non-streaming-paraformer.sh
```
## VAD with a microphone + Non-streaming Whisper tiny.en for speech recognition
```bash
./run-vad-from-mic-non-streaming-whisper.sh
```
## VAD (Remove silence)
```bash
... ...
// Copyright 2024 Xiaomi Corporation
// This file shows how to use a silero_vad model with a non-streaming Paraformer
// for speech recognition.
import com.k2fsa.sherpa.onnx.*;
import javax.sound.sampled.*;
public class VadFromMicWithNonStreamingParaformer {
private static final int sampleRate = 16000;
private static final int windowSize = 512;
public static Vad createVad() {
// please download ./silero_vad.onnx from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
String model = "./silero_vad.onnx";
SileroVadModelConfig sileroVad =
SileroVadModelConfig.builder()
.setModel(model)
.setThreshold(0.5f)
.setMinSilenceDuration(0.25f)
.setMinSpeechDuration(0.5f)
.setWindowSize(windowSize)
.build();
VadModelConfig config =
VadModelConfig.builder()
.setSileroVadModelConfig(sileroVad)
.setSampleRate(sampleRate)
.setNumThreads(1)
.setDebug(true)
.setProvider("cpu")
.build();
return new Vad(config);
}
public static OfflineRecognizer createOfflineRecognizer() {
// please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-paraformer/paraformer-models.html#csukuangfj-sherpa-onnx-paraformer-zh-2023-03-28-chinese-english
// to download model files
String model = "./sherpa-onnx-paraformer-zh-2023-03-28/model.int8.onnx";
String tokens = "./sherpa-onnx-paraformer-zh-2023-03-28/tokens.txt";
// https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/itn_zh_number.fst
String ruleFsts = "./itn_zh_number.fst";
OfflineParaformerModelConfig paraformer =
OfflineParaformerModelConfig.builder().setModel(model).build();
OfflineModelConfig modelConfig =
OfflineModelConfig.builder()
.setParaformer(paraformer)
.setTokens(tokens)
.setNumThreads(1)
.setDebug(true)
.build();
OfflineRecognizerConfig config =
OfflineRecognizerConfig.builder()
.setOfflineModelConfig(modelConfig)
.setDecodingMethod("greedy_search")
.setRuleFsts(ruleFsts)
.build();
return new OfflineRecognizer(config);
}
public static void main(String[] args) {
Vad vad = createVad();
OfflineRecognizer recognizer = createOfflineRecognizer();
// https://docs.oracle.com/javase/8/docs/api/javax/sound/sampled/AudioFormat.html
// Linear PCM, 16000Hz, 16-bit, 1 channel, signed, little endian
AudioFormat format = new AudioFormat(sampleRate, 16, 1, true, false);
// https://docs.oracle.com/javase/8/docs/api/javax/sound/sampled/DataLine.Info.html#Info-java.lang.Class-javax.sound.sampled.AudioFormat-int-
DataLine.Info info = new DataLine.Info(TargetDataLine.class, format);
TargetDataLine targetDataLine;
try {
targetDataLine = (TargetDataLine) AudioSystem.getLine(info);
targetDataLine.open(format);
targetDataLine.start();
} catch (LineUnavailableException e) {
System.out.println("Failed to open target data line: " + e.getMessage());
vad.release();
recognizer.release();
return;
}
boolean printed = false;
byte[] buffer = new byte[windowSize * 2];
float[] samples = new float[windowSize];
System.out.println("Started. Please speak");
boolean running = true;
while (targetDataLine.isOpen() && running) {
int n = targetDataLine.read(buffer, 0, buffer.length);
if (n <= 0) {
System.out.printf("Got %d bytes. Expected %d bytes.\n", n, buffer.length);
continue;
}
for (int i = 0; i != windowSize; ++i) {
short low = buffer[2 * i];
short high = buffer[2 * i + 1];
int s = (high << 8) + low;
samples[i] = (float) s / 32768;
}
vad.acceptWaveform(samples);
if (vad.isSpeechDetected() && !printed) {
System.out.println("Detected speech");
printed = true;
}
if (!vad.isSpeechDetected()) {
printed = false;
}
while (!vad.empty()) {
SpeechSegment segment = vad.front();
float startTime = segment.getStart() / (float) sampleRate;
float duration = segment.getSamples().length / (float) sampleRate;
OfflineStream stream = recognizer.createStream();
stream.acceptWaveform(segment.getSamples(), sampleRate);
recognizer.decode(stream);
String text = recognizer.getResult(stream).getText();
stream.release();
if (!text.isEmpty()) {
System.out.printf("%.3f--%.3f: %s\n", startTime, startTime + duration, text);
}
if (text.contains("退出程序")) {
running = false;
}
vad.pop();
}
}
vad.release();
recognizer.release();
}
}
... ...
// Copyright 2024 Xiaomi Corporation
// This file shows how to use a silero_vad model with a non-streaming Whisper tiny.en
// for speech recognition.
import com.k2fsa.sherpa.onnx.*;
import javax.sound.sampled.*;
public class VadFromMicNonStreamingWhisper {
private static final int sampleRate = 16000;
private static final int windowSize = 512;
public static Vad createVad() {
// please download ./silero_vad.onnx from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
String model = "./silero_vad.onnx";
SileroVadModelConfig sileroVad =
SileroVadModelConfig.builder()
.setModel(model)
.setThreshold(0.5f)
.setMinSilenceDuration(0.25f)
.setMinSpeechDuration(0.5f)
.setWindowSize(windowSize)
.build();
VadModelConfig config =
VadModelConfig.builder()
.setSileroVadModelConfig(sileroVad)
.setSampleRate(sampleRate)
.setNumThreads(1)
.setDebug(true)
.setProvider("cpu")
.build();
return new Vad(config);
}
public static OfflineRecognizer createOfflineRecognizer() {
// please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/whisper/tiny.en.html
// to download model files
String encoder = "./sherpa-onnx-whisper-tiny.en/tiny.en-encoder.int8.onnx";
String decoder = "./sherpa-onnx-whisper-tiny.en/tiny.en-decoder.int8.onnx";
String tokens = "./sherpa-onnx-whisper-tiny.en/tiny.en-tokens.txt";
OfflineWhisperModelConfig whisper =
OfflineWhisperModelConfig.builder().setEncoder(encoder).setDecoder(decoder).build();
OfflineModelConfig modelConfig =
OfflineModelConfig.builder()
.setWhisper(whisper)
.setTokens(tokens)
.setNumThreads(1)
.setDebug(true)
.build();
OfflineRecognizerConfig config =
OfflineRecognizerConfig.builder()
.setOfflineModelConfig(modelConfig)
.setDecodingMethod("greedy_search")
.build();
return new OfflineRecognizer(config);
}
public static void main(String[] args) {
Vad vad = createVad();
OfflineRecognizer recognizer = createOfflineRecognizer();
// https://docs.oracle.com/javase/8/docs/api/javax/sound/sampled/AudioFormat.html
// Linear PCM, 16000Hz, 16-bit, 1 channel, signed, little endian
AudioFormat format = new AudioFormat(sampleRate, 16, 1, true, false);
// https://docs.oracle.com/javase/8/docs/api/javax/sound/sampled/DataLine.Info.html#Info-java.lang.Class-javax.sound.sampled.AudioFormat-int-
DataLine.Info info = new DataLine.Info(TargetDataLine.class, format);
TargetDataLine targetDataLine;
try {
targetDataLine = (TargetDataLine) AudioSystem.getLine(info);
targetDataLine.open(format);
targetDataLine.start();
} catch (LineUnavailableException e) {
System.out.println("Failed to open target data line: " + e.getMessage());
vad.release();
recognizer.release();
return;
}
boolean printed = false;
byte[] buffer = new byte[windowSize * 2];
float[] samples = new float[windowSize];
System.out.println("Started. Please speak");
boolean running = true;
while (targetDataLine.isOpen() && running) {
int n = targetDataLine.read(buffer, 0, buffer.length);
if (n <= 0) {
System.out.printf("Got %d bytes. Expected %d bytes.\n", n, buffer.length);
continue;
}
for (int i = 0; i != windowSize; ++i) {
short low = buffer[2 * i];
short high = buffer[2 * i + 1];
int s = (high << 8) + low;
samples[i] = (float) s / 32768;
}
vad.acceptWaveform(samples);
if (vad.isSpeechDetected() && !printed) {
System.out.println("Detected speech");
printed = true;
}
if (!vad.isSpeechDetected()) {
printed = false;
}
while (!vad.empty()) {
SpeechSegment segment = vad.front();
float startTime = segment.getStart() / (float) sampleRate;
float duration = segment.getSamples().length / (float) sampleRate;
OfflineStream stream = recognizer.createStream();
stream.acceptWaveform(segment.getSamples(), sampleRate);
recognizer.decode(stream);
String text = recognizer.getResult(stream).getText();
stream.release();
if (!text.isEmpty()) {
System.out.printf("%.3f--%.3f: %s\n", startTime, startTime + duration, text);
}
if (text.contains("exit the program")) {
running = false;
}
vad.pop();
}
}
vad.release();
recognizer.release();
}
}
... ...
#!/usr/bin/env bash
set -ex
if [[ ! -f ../build/lib/libsherpa-onnx-jni.dylib && ! -f ../build/lib/libsherpa-onnx-jni.so ]]; then
mkdir -p ../build
pushd ../build
cmake \
-DSHERPA_ONNX_ENABLE_PYTHON=OFF \
-DSHERPA_ONNX_ENABLE_TESTS=OFF \
-DSHERPA_ONNX_ENABLE_CHECK=OFF \
-DBUILD_SHARED_LIBS=ON \
-DSHERPA_ONNX_ENABLE_PORTAUDIO=OFF \
-DSHERPA_ONNX_ENABLE_JNI=ON \
..
make -j4
ls -lh lib
popd
fi
if [ ! -f ../sherpa-onnx/java-api/build/sherpa-onnx.jar ]; then
pushd ../sherpa-onnx/java-api
make
popd
fi
if [ ! -f ./silero_vad.onnx ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
fi
if [ ! -f ./sherpa-onnx-paraformer-zh-2023-03-28/tokens.txt ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-paraformer-zh-2023-03-28.tar.bz2
tar xvf sherpa-onnx-paraformer-zh-2023-03-28.tar.bz2
rm sherpa-onnx-paraformer-zh-2023-03-28.tar.bz2
fi
if [ ! -f ./itn_zh_number.fst ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/itn_zh_number.fst
fi
java \
-Djava.library.path=$PWD/../build/lib \
-cp ../sherpa-onnx/java-api/build/sherpa-onnx.jar \
./VadFromMicWithNonStreamingParaformer.java
... ...
#!/usr/bin/env bash
set -ex
if [[ ! -f ../build/lib/libsherpa-onnx-jni.dylib && ! -f ../build/lib/libsherpa-onnx-jni.so ]]; then
mkdir -p ../build
pushd ../build
cmake \
-DSHERPA_ONNX_ENABLE_PYTHON=OFF \
-DSHERPA_ONNX_ENABLE_TESTS=OFF \
-DSHERPA_ONNX_ENABLE_CHECK=OFF \
-DBUILD_SHARED_LIBS=ON \
-DSHERPA_ONNX_ENABLE_PORTAUDIO=OFF \
-DSHERPA_ONNX_ENABLE_JNI=ON \
..
make -j4
ls -lh lib
popd
fi
if [ ! -f ../sherpa-onnx/java-api/build/sherpa-onnx.jar ]; then
pushd ../sherpa-onnx/java-api
make
popd
fi
if [ ! -f ./silero_vad.onnx ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
fi
if [ ! -f ./sherpa-onnx-whisper-tiny.en/tiny.en-tokens.txt ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-whisper-tiny.en.tar.bz2
tar xvf sherpa-onnx-whisper-tiny.en.tar.bz2
rm sherpa-onnx-whisper-tiny.en.tar.bz2
fi
java \
-Djava.library.path=$PWD/../build/lib \
-cp ../sherpa-onnx/java-api/build/sherpa-onnx.jar \
./VadFromMicWithNonStreamingWhisper.java
... ...
/*
* // Copyright 2022-2023 by zhaoming
*/
/*
Config modelconfig.cfg
sample_rate=16000
feature_dim=80
rule1_min_trailing_silence=2.4
rule2_min_trailing_silence=1.2
rule3_min_utterance_length=20
encoder=/sherpa-onnx/build/bin/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/encoder-epoch-99-avg-1.onnx
decoder=/sherpa-onnx/build/bin/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/decoder-epoch-99-avg-1.onnx
joiner=/sherpa-onnx/build/bin/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/joiner-epoch-99-avg-1.onnx
tokens=/sherpa-onnx/build/bin/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/tokens.txt
num_threads=4
enable_endpoint_detection=false
decoding_method=greedy_search
max_active_paths=4
*/
import com.k2fsa.sherpa.onnx.OnlineRecognizer;
import com.k2fsa.sherpa.onnx.OnlineStream;
import java.io.*;
import java.nio.charset.StandardCharsets;
public class DecodeFile {
OnlineRecognizer rcgOjb;
OnlineStream streamObj;
String wavfilename;
public DecodeFile(String fileName) {
wavfilename = fileName;
}
public void initModelWithPara() {
try {
String modelDir =
"/sherpa-onnx/build_old/bin/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20";
String encoder = modelDir + "/encoder-epoch-99-avg-1.onnx";
String decoder = modelDir + "/decoder-epoch-99-avg-1.onnx";
String joiner = modelDir + "/joiner-epoch-99-avg-1.onnx";
String tokens = modelDir + "/tokens.txt";
int numThreads = 4;
int sampleRate = 16000;
int featureDim = 80;
boolean enableEndpointDetection = false;
float rule1MinTrailingSilence = 2.4F;
float rule2MinTrailingSilence = 1.2F;
float rule3MinUtteranceLength = 20F;
String decodingMethod = "greedy_search";
int maxActivePaths = 4;
String hotwordsFile = "";
float hotwordsScore = 1.5F;
String lm_model = "";
float lm_scale = 0.5F;
String modelType = "zipformer";
rcgOjb =
new OnlineRecognizer(
tokens,
encoder,
decoder,
joiner,
numThreads,
sampleRate,
featureDim,
enableEndpointDetection,
rule1MinTrailingSilence,
rule2MinTrailingSilence,
rule3MinUtteranceLength,
decodingMethod,
lm_model,
lm_scale,
maxActivePaths,
hotwordsFile,
hotwordsScore,
modelType);
streamObj = rcgOjb.createStream();
} catch (Exception e) {
System.err.println(e);
e.printStackTrace();
}
}
public void initModelWithCfg(String cfgFile) {
try {
// you should set setCfgPath() before running this
rcgOjb = new OnlineRecognizer(cfgFile);
streamObj = rcgOjb.createStream();
} catch (Exception e) {
System.err.println(e);
e.printStackTrace();
}
}
public void simpleExample() {
try {
float[] buffer = rcgOjb.readWavFile(wavfilename); // read data from file
streamObj.acceptWaveform(buffer); // feed stream with data
streamObj.inputFinished(); // tell engine you done with all data
OnlineStream ssObj[] = new OnlineStream[1];
while (rcgOjb.isReady(streamObj)) { // engine is ready for unprocessed data
ssObj[0] = streamObj;
rcgOjb.decodeStreams(ssObj); // decode for multiple stream
// rcgOjb.DecodeStream(streamObj); // decode for single stream
}
String recText = "simple:" + rcgOjb.getResult(streamObj) + "\n";
byte[] utf8Data = recText.getBytes(StandardCharsets.UTF_8);
System.out.println(new String(utf8Data));
rcgOjb.reSet(streamObj);
rcgOjb.releaseStream(streamObj); // release stream
rcgOjb.release(); // release recognizer
} catch (Exception e) {
System.err.println(e);
e.printStackTrace();
}
}
public void streamExample() {
try {
float[] buffer = rcgOjb.readWavFile(wavfilename); // read data from file
float[] chunk = new float[1600]; // //each time read 1600(0.1s) data
int chunkIndex = 0;
for (int i = 0; i < buffer.length; i++) // total wav length loop
{
chunk[chunkIndex] = buffer[i];
chunkIndex++;
if (chunkIndex >= 1600 || i == (buffer.length - 1)) {
chunkIndex = 0;
streamObj.acceptWaveform(chunk); // feed chunk
if (rcgOjb.isReady(streamObj)) {
rcgOjb.decodeStream(streamObj);
}
String testDate = rcgOjb.getResult(streamObj);
byte[] utf8Data = testDate.getBytes(StandardCharsets.UTF_8);
if (utf8Data.length > 0) {
System.out.println(Float.valueOf((float) i / 16000) + ":" + new String(utf8Data));
}
}
}
streamObj.inputFinished();
while (rcgOjb.isReady(streamObj)) {
rcgOjb.decodeStream(streamObj);
}
String recText = "stream:" + rcgOjb.getResult(streamObj) + "\n";
byte[] utf8Data = recText.getBytes(StandardCharsets.UTF_8);
System.out.println(new String(utf8Data));
rcgOjb.reSet(streamObj);
rcgOjb.releaseStream(streamObj); // release stream
rcgOjb.release(); // release recognizer
} catch (Exception e) {
System.err.println(e);
e.printStackTrace();
}
}
public static void main(String[] args) {
try {
String appDir = System.getProperty("user.dir");
System.out.println("appdir=" + appDir);
String fileName = appDir + "/" + args[0];
String cfgPath = appDir + "/modeltest.cfg";
String soPath = appDir + "/../build/lib/libsherpa-onnx-jni.so";
OnlineRecognizer.setSoPath(soPath);
DecodeFile rcgDemo = new DecodeFile(fileName);
// ***************** */
rcgDemo.initModelWithCfg(cfgPath);
rcgDemo.streamExample();
// **************** */
rcgDemo.initModelWithCfg(cfgPath);
rcgDemo.simpleExample();
} catch (Exception e) {
System.err.println(e);
e.printStackTrace();
}
}
}
/*
* // Copyright 2022-2023 by zhaoming
*/
/*
Real-time speech recognition from a microphone with com.k2fsa.sherpa.onnx Java API
example for cfgFile modelconfig.cfg
sample_rate=16000
feature_dim=80
rule1_min_trailing_silence=2.4
rule2_min_trailing_silence=1.2
rule3_min_utterance_length=20
encoder=/sherpa-onnx/build/bin/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/encoder-epoch-99-avg-1.onnx
decoder=/sherpa-onnx/build/bin/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/decoder-epoch-99-avg-1.onnx
joiner=/sherpa-onnx/build/bin/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/joiner-epoch-99-avg-1.onnx
tokens=/sherpa-onnx/build/bin/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/tokens.txt
num_threads=4
enable_endpoint_detection=true
decoding_method=greedy_search
max_active_paths=4
*/
import com.k2fsa.sherpa.onnx.OnlineRecognizer;
import com.k2fsa.sherpa.onnx.OnlineStream;
import java.io.*;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.ShortBuffer;
import java.nio.charset.StandardCharsets;
import javax.sound.sampled.AudioFormat;
import javax.sound.sampled.AudioSystem;
import javax.sound.sampled.DataLine;
import javax.sound.sampled.TargetDataLine;
/** Microphone Example */
public class DecodeMic {
MicRcgThread micRcgThread = null; // thread handle
OnlineRecognizer rcgOjb; // the recognizer
OnlineStream streamObj; // the stream
public DecodeMic() {
micRcgThread = new MicRcgThread(); // create a new instance for MicRcgThread
}
public void open() {
micRcgThread.start(); // start to capture microphone data
}
public void close() {
micRcgThread.stop(); // close capture
}
/** init asr engine with config file */
public void initModelWithCfg(String cfgFile) {
try {
// set setSoPath() before running this
rcgOjb = new OnlineRecognizer(cfgFile);
streamObj = rcgOjb.createStream(); // create a stream for asr engine to feed data
} catch (Exception e) {
System.err.println(e);
e.printStackTrace();
}
}
/** read data from mic and feed to asr engine */
class MicRcgThread implements Runnable {
TargetDataLine capline; // line for capture mic data
Thread thread; // this thread
int segmentId = 0; // record the segment id when detect endpoint
String preText = ""; // decoded text
public MicRcgThread() {}
public void start() {
thread = new Thread(this);
thread.start(); // start thread
}
public void stop() {
capline.stop();
capline.close();
capline = null;
thread = null;
}
/** feed captured microphone data to asr */
public void decodeSample(byte[] samplebytes) {
try {
ByteBuffer byteBuf = ByteBuffer.wrap(samplebytes); // create a bytebuf for samples
byteBuf.order(ByteOrder.LITTLE_ENDIAN); // set bytebuf to little endian
ShortBuffer shortBuf = byteBuf.asShortBuffer(); // covert to short type
short[] arrShort = new short[shortBuf.capacity()]; // array for copy short data
float[] arrFloat = new float[shortBuf.capacity()]; // array for copy float data
shortBuf.get(arrShort); // put date to arrShort
for (int i = 0; i < arrShort.length; i++) {
arrFloat[i] = arrShort[i] / 32768f; // loop to covert short data to float -1 to 1
}
streamObj.acceptWaveform(arrFloat); // feed asr engine with float data
while (rcgOjb.isReady(streamObj)) { // if engine is ready for unprocessed data
rcgOjb.decodeStream(streamObj); // decode for this stream
}
boolean isEndpoint =
rcgOjb.isEndpoint(
streamObj); // endpoint check, make sure enable_endpoint_detection=true in config
// file
String nowText = rcgOjb.getResult(streamObj); // get asr result
String recText = "";
byte[] utf8Data; // for covert text to utf8
if (isEndpoint && nowText.length() > 0) {
rcgOjb.reSet(streamObj); // reSet stream when detect endpoint
segmentId++;
preText = nowText;
recText = "text(seg_" + String.valueOf(segmentId) + "):" + nowText + "\n";
utf8Data = recText.getBytes(StandardCharsets.UTF_8);
System.out.println(new String(utf8Data));
}
if (!nowText.equals(preText)) { // if preText not equal nowtext
preText = nowText;
recText = nowText + "\n";
utf8Data = recText.getBytes(StandardCharsets.UTF_8);
System.out.println(new String(utf8Data));
}
} catch (Exception e) {
System.err.println(e);
e.printStackTrace();
}
}
/** run mic capture thread */
public void run() {
System.out.println("Started! Please speak...");
AudioFormat.Encoding encoding = AudioFormat.Encoding.PCM_SIGNED; // the pcm format
float rate = 16000.0f; // using 16 kHz
int channels = 1; // single channel
int sampleSize = 16; // sampleSize 16bit
boolean isBigEndian = false; // using little endian
AudioFormat format =
new AudioFormat(
encoding, rate, sampleSize, channels, (sampleSize / 8) * channels, rate, isBigEndian);
DataLine.Info info = new DataLine.Info(TargetDataLine.class, format);
// check system support such data format
if (!AudioSystem.isLineSupported(info)) {
System.out.println(info + " not supported.");
return;
}
// open a line for capture.
try {
capline = (TargetDataLine) AudioSystem.getLine(info);
capline.open(format, capline.getBufferSize());
} catch (Exception ex) {
System.out.println(ex);
return;
}
// the buf size for mic captured each time
int bufferLengthInBytes = capline.getBufferSize() / 8 * format.getFrameSize();
byte[] micData = new byte[bufferLengthInBytes];
int numBytesRead;
capline.start(); // start to capture mic data
while (thread != null) {
// read data from line
if ((numBytesRead = capline.read(micData, 0, bufferLengthInBytes)) == -1) {
break;
}
decodeSample(micData); // decode mic data
}
// stop and close
try {
if (capline != null) {
capline.stop();
capline.close();
capline = null;
}
} catch (Exception ex) {
System.err.println(ex);
}
}
} // End class DecodeMic
public static void main(String s[]) {
try {
String appDir = System.getProperty("user.dir");
System.out.println("appdir=" + appDir);
String cfgPath = appDir + "/modelconfig.cfg";
String soPath = appDir + "/../build/lib/libsherpa-onnx-jni.so";
OnlineRecognizer.setSoPath(soPath); // set so. lib for OnlineRecognizer
DecodeMic decodeEx = new DecodeMic();
decodeEx.initModelWithCfg(cfgPath); // init asr engine
decodeEx.open(); // open thread for mic
System.out.print("Press Enter to EXIT!\n");
char i = (char) System.in.read();
decodeEx.close();
} catch (Exception e) {
System.err.println(e);
e.printStackTrace();
}
}
}