Fangjun Kuang
Committed by GitHub

Add online transducer decoder (#27)

function(download_kaldi_native_fbank)
include(FetchContent)
set(kaldi_native_fbank_URL "https://github.com/csukuangfj/kaldi-native-fbank/archive/refs/tags/v1.11.tar.gz")
set(kaldi_native_fbank_HASH "SHA256=e69ae25ef6f30566ef31ca949dd1b0b8ec3a827caeba93a61d82bb848dac5d69")
set(kaldi_native_fbank_URL "https://github.com/csukuangfj/kaldi-native-fbank/archive/refs/tags/v1.12.tar.gz")
set(kaldi_native_fbank_HASH "SHA256=8f4dfc3f6ddb1adcd9ac0ae87743ebc6cbcae147aacf9d46e76fa54134e12b44")
set(KALDI_NATIVE_FBANK_BUILD_TESTS OFF CACHE BOOL "" FORCE)
set(KALDI_NATIVE_FBANK_BUILD_PYTHON OFF CACHE BOOL "" FORCE)
... ... @@ -11,10 +11,11 @@ function(download_kaldi_native_fbank)
# If you don't have access to the Internet,
# please pre-download kaldi-native-fbank
set(possible_file_locations
$ENV{HOME}/Downloads/kaldi-native-fbank-1.11.tar.gz
${PROJECT_SOURCE_DIR}/kaldi-native-fbank-1.11.tar.gz
${PROJECT_BINARY_DIR}/kaldi-native-fbank-1.11.tar.gz
/tmp/kaldi-native-fbank-1.11.tar.gz
$ENV{HOME}/Downloads/kaldi-native-fbank-1.12.tar.gz
${PROJECT_SOURCE_DIR}/kaldi-native-fbank-1.12.tar.gz
${PROJECT_BINARY_DIR}/kaldi-native-fbank-1.12.tar.gz
/tmp/kaldi-native-fbank-1.12.tar.gz
/star-fj/fangjun/download/github/kaldi-native-fbank-1.12.tar.gz
)
foreach(f IN LISTS possible_file_locations)
... ...
... ... @@ -9,6 +9,7 @@ function(download_onnxruntime)
${PROJECT_SOURCE_DIR}/onnxruntime-linux-x64-1.14.0.tgz
${PROJECT_BINARY_DIR}/onnxruntime-linux-x64-1.14.0.tgz
/tmp/onnxruntime-linux-x64-1.14.0.tgz
/star-fj/fangjun/download/github/onnxruntime-linux-x64-1.14.0.tgz
)
set(onnxruntime_URL "https://github.com/microsoft/onnxruntime/releases/download/v1.14.0/onnxruntime-linux-x64-1.14.0.tgz")
... ...
include_directories(${CMAKE_SOURCE_DIR})
add_executable(sherpa-onnx
decode.cc
features.cc
online-lstm-transducer-model.cc
online-transducer-greedy-search-decoder.cc
online-transducer-model-config.cc
online-transducer-model.cc
onnx-utils.cc
... ...
// sherpa/csrc/decode.h
//
// Copyright (c) 2023 Xiaomi Corporation
#ifndef SHERPA_ONNX_CSRC_DECODE_H_
#define SHERPA_ONNX_CSRC_DECODE_H_
#include <vector>
#include "sherpa-onnx/csrc/online-transducer-model.h"
namespace sherpa_onnx {
/** Greedy search for non-streaming ASR.
*
* @TODO(fangjun) Support batch size > 1
*
* @param model The RnntModel
* @param encoder_out Its shape is (1, num_frames, encoder_out_dim).
*/
void GreedySearch(OnlineTransducerModel *model, Ort::Value encoder_out,
std::vector<int64_t> *hyp);
} // namespace sherpa_onnx
#endif // SHERPA_ONNX_CSRC_DECODE_H_
... ... @@ -15,16 +15,16 @@ namespace sherpa_onnx {
class FeatureExtractor::Impl {
public:
Impl(int32_t sampling_rate, int32_t feature_dim) {
explicit Impl(const FeatureExtractorConfig &config) {
opts_.frame_opts.dither = 0;
opts_.frame_opts.snip_edges = false;
opts_.frame_opts.samp_freq = sampling_rate;
opts_.frame_opts.samp_freq = config.sampling_rate;
// cache 100 seconds of feature frames, which is more than enough
// for real needs
opts_.frame_opts.max_feature_vectors = 100 * 100;
opts_.mel_opts.num_bins = feature_dim;
opts_.mel_opts.num_bins = config.feature_dim;
fbank_ = std::make_unique<knf::OnlineFbank>(opts_);
}
... ... @@ -80,9 +80,8 @@ class FeatureExtractor::Impl {
mutable std::mutex mutex_;
};
FeatureExtractor::FeatureExtractor(int32_t sampling_rate /*=16000*/,
int32_t feature_dim /*=80*/)
: impl_(std::make_unique<Impl>(sampling_rate, feature_dim)) {}
FeatureExtractor::FeatureExtractor(const FeatureExtractorConfig &config /*={}*/)
: impl_(std::make_unique<Impl>(config)) {}
FeatureExtractor::~FeatureExtractor() = default;
... ...
... ... @@ -10,14 +10,18 @@
namespace sherpa_onnx {
struct FeatureExtractorConfig {
int32_t sampling_rate = 16000;
int32_t feature_dim = 80;
};
class FeatureExtractor {
public:
/**
* @param sampling_rate Sampling rate of the data used to train the model.
* @param feature_dim Dimension of the features used to train the model.
*/
explicit FeatureExtractor(int32_t sampling_rate = 16000,
int32_t feature_dim = 80);
explicit FeatureExtractor(const FeatureExtractorConfig &config = {});
~FeatureExtractor();
/**
... ...
// sherpa/csrc/online-transducer-decoder.h
//
// Copyright (c) 2023 Xiaomi Corporation
#ifndef SHERPA_ONNX_CSRC_ONLINE_TRANSDUCER_DECODER_H_
#define SHERPA_ONNX_CSRC_ONLINE_TRANSDUCER_DECODER_H_
#include <vector>
#include "onnxruntime_cxx_api.h" // NOLINT
namespace sherpa_onnx {
struct OnlineTransducerDecoderResult {
/// The decoded token IDs so far
std::vector<int64_t> tokens;
};
class OnlineTransducerDecoder {
public:
virtual ~OnlineTransducerDecoder() = default;
/* Return an empty result.
*
* To simplify the decoding code, we add `context_size` blanks
* to the beginning of the decoding result, which will be
* stripped by calling `StripPrecedingBlanks()`.
*/
virtual OnlineTransducerDecoderResult GetEmptyResult() = 0;
/** Strip blanks added by `GetEmptyResult()`.
*
* @param r It is changed in-place.
*/
virtual void StripLeadingBlanks(OnlineTransducerDecoderResult * /*r*/) {}
/** Run transducer beam search given the output from the encoder model.
*
* @param encoder_out A 3-D tensor of shape (N, T, joiner_dim)
* @param result It is modified in-place.
*
* @note There is no need to pass encoder_out_length here since for the
* online decoding case, each utterance has the same number of frames
* and there are no paddings.
*/
virtual void Decode(Ort::Value encoder_out,
std::vector<OnlineTransducerDecoderResult> *result) = 0;
};
} // namespace sherpa_onnx
#endif // SHERPA_ONNX_CSRC_ONLINE_TRANSDUCER_DECODER_H_
... ...
// sherpa/csrc/decode.cc
// sherpa/csrc/online-transducer-greedy-search-decoder.cc
//
// Copyright (c) 2023 Xiaomi Corporation
#include "sherpa-onnx/csrc/decode.h"
#include "sherpa-onnx/csrc/online-transducer-greedy-search-decoder.h"
#include <assert.h>
... ... @@ -10,19 +10,9 @@
#include <utility>
#include <vector>
namespace sherpa_onnx {
static Ort::Value Clone(Ort::Value *v) {
auto type_and_shape = v->GetTensorTypeAndShapeInfo();
std::vector<int64_t> shape = type_and_shape.GetShape();
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
#include "sherpa-onnx/csrc/onnx-utils.h"
return Ort::Value::CreateTensor(memory_info, v->GetTensorMutableData<float>(),
type_and_shape.GetElementCount(),
shape.data(), shape.size());
}
namespace sherpa_onnx {
static Ort::Value GetFrame(Ort::Value *encoder_out, int32_t t) {
std::vector<int64_t> encoder_out_shape =
... ... @@ -42,26 +32,58 @@ static Ort::Value GetFrame(Ort::Value *encoder_out, int32_t t) {
encoder_out_dim, shape.data(), shape.size());
}
void GreedySearch(OnlineTransducerModel *model, Ort::Value encoder_out,
std::vector<int64_t> *hyp) {
OnlineTransducerDecoderResult
OnlineTransducerGreedySearchDecoder::GetEmptyResult() {
int32_t context_size = model_->ContextSize();
int32_t blank_id = 0; // always 0
OnlineTransducerDecoderResult r;
r.tokens.resize(context_size, blank_id);
return r;
}
void OnlineTransducerGreedySearchDecoder::StripLeadingBlanks(
OnlineTransducerDecoderResult *r) {
int32_t context_size = model_->ContextSize();
auto start = r->tokens.begin() + context_size;
auto end = r->tokens.end();
r->tokens = std::vector<int64_t>(start, end);
}
void OnlineTransducerGreedySearchDecoder::Decode(
Ort::Value encoder_out,
std::vector<OnlineTransducerDecoderResult> *result) {
std::vector<int64_t> encoder_out_shape =
encoder_out.GetTensorTypeAndShapeInfo().GetShape();
if (encoder_out_shape[0] > 1) {
fprintf(stderr, "Only batch_size=1 is implemented. Given: %d\n",
static_cast<int32_t>(encoder_out_shape[0]));
if (encoder_out_shape[0] != result->size()) {
fprintf(stderr,
"Size mismatch! encoder_out.size(0) %d, result.size(0): %d\n",
static_cast<int32_t>(encoder_out_shape[0]),
static_cast<int32_t>(result->size()));
exit(-1);
}
if (result->size() != 1) {
fprintf(stderr, "only batch size == 1 is implemented. Given: %d",
static_cast<int32_t>(result->size()));
exit(-1);
}
auto &hyp = (*result)[0].tokens;
int32_t num_frames = encoder_out_shape[1];
int32_t vocab_size = model->VocabSize();
int32_t vocab_size = model_->VocabSize();
Ort::Value decoder_input = model->BuildDecoderInput(*hyp);
Ort::Value decoder_out = model->RunDecoder(std::move(decoder_input));
Ort::Value decoder_input = model_->BuildDecoderInput(hyp);
Ort::Value decoder_out = model_->RunDecoder(std::move(decoder_input));
for (int32_t t = 0; t != num_frames; ++t) {
Ort::Value cur_encoder_out = GetFrame(&encoder_out, t);
Ort::Value logit =
model->RunJoiner(std::move(cur_encoder_out), Clone(&decoder_out));
model_->RunJoiner(std::move(cur_encoder_out), Clone(&decoder_out));
const float *p_logit = logit.GetTensorData<float>();
auto y = static_cast<int32_t>(std::distance(
... ... @@ -69,9 +91,9 @@ void GreedySearch(OnlineTransducerModel *model, Ort::Value encoder_out,
std::max_element(static_cast<const float *>(p_logit),
static_cast<const float *>(p_logit) + vocab_size)));
if (y != 0) {
hyp->push_back(y);
decoder_input = model->BuildDecoderInput(*hyp);
decoder_out = model->RunDecoder(std::move(decoder_input));
hyp.push_back(y);
decoder_input = model_->BuildDecoderInput(hyp);
decoder_out = model_->RunDecoder(std::move(decoder_input));
}
}
}
... ...
// sherpa/csrc/online-transducer-greedy-search-decoder.h
//
// Copyright (c) 2023 Xiaomi Corporation
#ifndef SHERPA_ONNX_CSRC_ONLINE_TRANSDUCER_GREEDY_SEARCH_DECODER_H_
#define SHERPA_ONNX_CSRC_ONLINE_TRANSDUCER_GREEDY_SEARCH_DECODER_H_
#include <vector>
#include "sherpa-onnx/csrc/online-transducer-decoder.h"
#include "sherpa-onnx/csrc/online-transducer-model.h"
namespace sherpa_onnx {
class OnlineTransducerGreedySearchDecoder : public OnlineTransducerDecoder {
public:
explicit OnlineTransducerGreedySearchDecoder(OnlineTransducerModel *model)
: model_(model) {}
OnlineTransducerDecoderResult GetEmptyResult() override;
void StripLeadingBlanks(OnlineTransducerDecoderResult *r) override;
void Decode(Ort::Value encoder_out,
std::vector<OnlineTransducerDecoderResult> *result) override;
private:
OnlineTransducerModel *model_; // Not owned
};
} // namespace sherpa_onnx
#endif // SHERPA_ONNX_CSRC_ONLINE_TRANSDUCER_GREEDY_SEARCH_DECODER_H_
... ...
... ... @@ -46,4 +46,16 @@ void PrintModelMetadata(std::ostream &os, const Ort::ModelMetadata &meta_data) {
}
}
Ort::Value Clone(Ort::Value *v) {
auto type_and_shape = v->GetTensorTypeAndShapeInfo();
std::vector<int64_t> shape = type_and_shape.GetShape();
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
return Ort::Value::CreateTensor(memory_info, v->GetTensorMutableData<float>(),
type_and_shape.GetElementCount(),
shape.data(), shape.size());
}
} // namespace sherpa_onnx
... ...
... ... @@ -55,6 +55,9 @@ void GetOutputNames(Ort::Session *sess, std::vector<std::string> *output_names,
void PrintModelMetadata(std::ostream &os,
const Ort::ModelMetadata &meta_data); // NOLINT
// Return a shallow copy of v
Ort::Value Clone(Ort::Value *v);
} // namespace sherpa_onnx
#endif // SHERPA_ONNX_CSRC_ONNX_UTILS_H_
... ...
... ... @@ -9,8 +9,8 @@
#include <vector>
#include "kaldi-native-fbank/csrc/online-feature.h"
#include "sherpa-onnx/csrc/decode.h"
#include "sherpa-onnx/csrc/features.h"
#include "sherpa-onnx/csrc/online-transducer-greedy-search-decoder.h"
#include "sherpa-onnx/csrc/online-transducer-model-config.h"
#include "sherpa-onnx/csrc/online-transducer-model.h"
#include "sherpa-onnx/csrc/symbol-table.h"
... ... @@ -64,8 +64,6 @@ for a list of pre-trained models to download.
std::vector<Ort::Value> states = model->GetEncoderInitStates();
std::vector<int64_t> hyp(model->ContextSize(), 0);
int32_t expected_sampling_rate = 16000;
bool is_ok = false;
... ... @@ -100,6 +98,10 @@ for a list of pre-trained models to download.
std::array<int64_t, 3> x_shape{1, chunk_size, feature_dim};
sherpa_onnx::OnlineTransducerGreedySearchDecoder decoder(model.get());
std::vector<sherpa_onnx::OnlineTransducerDecoderResult> result = {
decoder.GetEmptyResult()};
for (int32_t start = 0; start + chunk_size < num_frames;
start += chunk_shift) {
std::vector<float> features = feat_extractor.GetFrames(start, chunk_size);
... ... @@ -109,8 +111,10 @@ for a list of pre-trained models to download.
x_shape.data(), x_shape.size());
auto pair = model->RunEncoder(std::move(x), states);
states = std::move(pair.second);
sherpa_onnx::GreedySearch(model.get(), std::move(pair.first), &hyp);
decoder.Decode(std::move(pair.first), &result);
}
decoder.StripLeadingBlanks(&result[0]);
const auto &hyp = result[0].tokens;
std::string text;
for (size_t i = model->ContextSize(); i != hyp.size(); ++i) {
text += sym[hyp[i]];
... ...