Fangjun Kuang
Committed by GitHub

Support exporting models to onnx from 3D-Speaker (#522)

name: export-3dspeaker-to-onnx
on:
workflow_dispatch:
concurrency:
group: export-3dspeaker-to-onnx-${{ github.ref }}
cancel-in-progress: true
jobs:
export-3dspeaker-to-onnx:
if: github.repository_owner == 'k2-fsa' || github.repository_owner == 'csukuangfj'
name: export 3d-speaker to ONNX
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [macos-latest]
python-version: ["3.8"]
steps:
- uses: actions/checkout@v4
- name: Setup Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Run
shell: bash
run: |
cd scripts/3dspeaker
./run.sh
mv -v *.onnx ../..
- name: Release
uses: svenstaro/upload-release-action@v2
with:
file_glob: true
file: ./*.onnx
overwrite: true
repo_name: k2-fsa/sherpa-onnx
repo_token: ${{ secrets.UPLOAD_GH_SHERPA_ONNX_TOKEN }}
tag: speaker-recongition-models
... ...
# Introduction
This directory contains scripts
about exporting models from https://github.com/alibaba-damo-academy/3D-Speaker
to `onnx` so that they can be used in `sherpa-onnx`.
... ...
#!/usr/bin/env python3
# Copyright 2023-2024 Xiaomi Corp. (authors: Fangjun Kuang)
import argparse
import json
import os
import pathlib
import re
from typing import Dict
import onnx
import torch
from infer_sv import supports
from modelscope.hub.snapshot_download import snapshot_download
from speakerlab.utils.builder import dynamic_import
def add_meta_data(filename: str, meta_data: Dict[str, str]):
"""Add meta data to an ONNX model. It is changed in-place.
Args:
filename:
Filename of the ONNX model to be changed.
meta_data:
Key-value pairs.
"""
model = onnx.load(filename)
for key, value in meta_data.items():
meta = model.metadata_props.add()
meta.key = key
meta.value = str(value)
onnx.save(model, filename)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model",
type=str,
required=True,
choices=[
"speech_campplus_sv_en_voxceleb_16k",
"speech_campplus_sv_zh-cn_16k-common",
"speech_eres2net_sv_en_voxceleb_16k",
"speech_eres2net_sv_zh-cn_16k-common",
"speech_eres2net_base_200k_sv_zh-cn_16k-common",
"speech_eres2net_base_sv_zh-cn_3dspeaker_16k",
"speech_eres2net_large_sv_zh-cn_3dspeaker_16k",
],
)
return parser.parse_args()
@torch.no_grad()
def main():
args = get_args()
local_model_dir = "pretrained"
model_id = f"damo/{args.model}"
conf = supports[model_id]
cache_dir = snapshot_download(
model_id,
revision=conf["revision"],
)
cache_dir = pathlib.Path(cache_dir)
save_dir = os.path.join(local_model_dir, model_id.split("/")[1])
save_dir = pathlib.Path(save_dir)
save_dir.mkdir(exist_ok=True, parents=True)
download_files = ["examples", conf["model_pt"]]
for src in cache_dir.glob("*"):
if re.search("|".join(download_files), src.name):
dst = save_dir / src.name
try:
dst.unlink()
except FileNotFoundError:
pass
dst.symlink_to(src)
pretrained_model = save_dir / conf["model_pt"]
pretrained_state = torch.load(pretrained_model, map_location="cpu")
model = conf["model"]
embedding_model = dynamic_import(model["obj"])(**model["args"])
embedding_model.load_state_dict(pretrained_state)
embedding_model.eval()
with open(f"{cache_dir}/configuration.json") as f:
json_config = json.loads(f.read())
print(json_config)
T = 100
C = 80
x = torch.rand(1, T, C)
filename = f"{args.model}.onnx"
torch.onnx.export(
embedding_model,
x,
filename,
opset_version=13,
input_names=["x"],
output_names=["embedding"],
dynamic_axes={
"x": {0: "N", 1: "T"},
"embeddings": {0: "N"},
},
)
# all models from 3d-speaker expect input samples in the range
# [-1, 1]
normalize_samples = 1
# all models from 3d-speaker normalize the features by the global mean
feature_normalize_type = "global-mean"
sample_rate = json_config["model"]["model_config"]["sample_rate"]
feat_dim = conf["model"]["args"]["feat_dim"]
assert feat_dim == 80, feat_dim
output_dim = conf["model"]["args"]["embedding_size"]
if "zh-cn" in args.model:
language = "Chinese"
elif "en" in args.model:
language = "English"
else:
raise ValueError(f"Unsupported language for model {args.model}")
comment = f"This model is from damo/{args.model}"
url = f"https://www.modelscope.cn/models/damo/{args.model}/summary"
meta_data = {
"framework": "3d-speaker",
"language": language,
"url": url,
"comment": comment,
"sample_rate": sample_rate,
"output_dim": output_dim,
"normalize_samples": normalize_samples,
"feature_normalize_type": feature_normalize_type,
}
print(meta_data)
add_meta_data(filename=filename, meta_data=meta_data)
main()
... ...
#!/usr/bin/env bash
set -e
function install_3d_speaker() {
echo "Install 3D-Speaker"
git clone https://github.com/alibaba-damo-academy/3D-Speaker.git
pushd 3D-Speaker
pip install -q -r ./requirements.txt
pip install -q modelscope onnx onnxruntime kaldi-native-fbank
popd
}
function download_test_data() {
wget -q https://github.com/csukuangfj/sr-data/raw/main/test/3d-speaker/speaker1_a_cn_16k.wav
wget -q https://github.com/csukuangfj/sr-data/raw/main/test/3d-speaker/speaker1_b_cn_16k.wav
wget -q https://github.com/csukuangfj/sr-data/raw/main/test/3d-speaker/speaker2_a_cn_16k.wav
wget -q https://github.com/csukuangfj/sr-data/raw/main/test/3d-speaker/speaker1_a_en_16k.wav
wget -q https://github.com/csukuangfj/sr-data/raw/main/test/3d-speaker/speaker1_b_en_16k.wav
wget -q https://github.com/csukuangfj/sr-data/raw/main/test/3d-speaker/speaker2_a_en_16k.wav
}
install_3d_speaker
download_test_data
export PYTHONPATH=$PWD/3D-Speaker:$PYTHONPATH
export PYTHONPATH=$PWD/3D-Speaker/speakerlab/bin:$PYTHONPATH
models=(
speech_campplus_sv_en_voxceleb_16k
speech_campplus_sv_zh-cn_16k-common
speech_eres2net_sv_en_voxceleb_16k
speech_eres2net_sv_zh-cn_16k-common
speech_eres2net_base_200k_sv_zh-cn_16k-common
speech_eres2net_base_sv_zh-cn_3dspeaker_16k
speech_eres2net_large_sv_zh-cn_3dspeaker_16k
)
for model in ${models[@]}; do
echo "--------------------$model--------------------"
python3 ./export-onnx.py --model $model
python3 ./test-onnx.py \
--model ${model}.onnx \
--file1 ./speaker1_a_cn_16k.wav \
--file2 ./speaker1_b_cn_16k.wav
python3 ./test-onnx.py \
--model ${model}.onnx \
--file1 ./speaker1_a_cn_16k.wav \
--file2 ./speaker2_a_cn_16k.wav
python3 ./test-onnx.py \
--model ${model}.onnx \
--file1 ./speaker1_a_en_16k.wav \
--file2 ./speaker1_b_en_16k.wav
python3 ./test-onnx.py \
--model ${model}.onnx \
--file1 ./speaker1_a_en_16k.wav \
--file2 ./speaker2_a_en_16k.wav
done
... ...
#!/usr/bin/env python3
# Copyright 2023-2024 Xiaomi Corp. (authors: Fangjun Kuang)
"""
This script computes speaker similarity score in the range [0-1]
of two wave files using a speaker embedding model.
"""
import argparse
import wave
from pathlib import Path
import kaldi_native_fbank as knf
import numpy as np
import onnxruntime as ort
from numpy.linalg import norm
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model",
type=str,
required=True,
help="Path to the input onnx model. Example value: model.onnx",
)
parser.add_argument(
"--file1",
type=str,
required=True,
help="Input wave 1",
)
parser.add_argument(
"--file2",
type=str,
required=True,
help="Input wave 2",
)
return parser.parse_args()
def read_wavefile(filename, expected_sample_rate: int = 16000) -> np.ndarray:
"""
Args:
filename:
Path to a wave file, which must be of 16-bit and 16kHz.
expected_sample_rate:
Expected sample rate of the wave file.
Returns:
Return a 1-D float32 array containing audio samples. Each sample is in
the range [-1, 1].
"""
filename = str(filename)
with wave.open(filename) as f:
wave_file_sample_rate = f.getframerate()
assert wave_file_sample_rate == expected_sample_rate, (
wave_file_sample_rate,
expected_sample_rate,
)
num_channels = f.getnchannels()
assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes
num_samples = f.getnframes()
samples = f.readframes(num_samples)
samples_int16 = np.frombuffer(samples, dtype=np.int16)
samples_int16 = samples_int16.reshape(-1, num_channels)[:, 0]
samples_float32 = samples_int16.astype(np.float32)
samples_float32 = samples_float32 / 32768
return samples_float32
def compute_features(samples: np.ndarray, sample_rate: int) -> np.ndarray:
opts = knf.FbankOptions()
opts.frame_opts.dither = 0
opts.frame_opts.samp_freq = sample_rate
opts.frame_opts.snip_edges = True
opts.mel_opts.num_bins = 80
opts.mel_opts.debug_mel = False
fbank = knf.OnlineFbank(opts)
fbank.accept_waveform(sample_rate, samples)
fbank.input_finished()
features = []
for i in range(fbank.num_frames_ready):
f = fbank.get_frame(i)
features.append(f)
features = np.stack(features, axis=0)
return features
class OnnxModel:
def __init__(
self,
filename: str,
):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 1
self.session_opts = session_opts
self.model = ort.InferenceSession(
filename,
sess_options=self.session_opts,
)
meta = self.model.get_modelmeta().custom_metadata_map
self.normalize_samples = int(meta["normalize_samples"])
self.sample_rate = int(meta["sample_rate"])
self.output_dim = int(meta["output_dim"])
self.feature_normalize_type = meta["feature_normalize_type"]
def __call__(self, x: np.ndarray) -> np.ndarray:
"""
Args:
x:
A 2-D float32 tensor of shape (T, C).
y:
A 1-D float32 tensor containing model output.
"""
x = np.expand_dims(x, axis=0)
return self.model.run(
[
self.model.get_outputs()[0].name,
],
{
self.model.get_inputs()[0].name: x,
},
)[0][0]
def main():
args = get_args()
print(args)
filename = Path(args.model)
file1 = Path(args.file1)
file2 = Path(args.file2)
assert filename.is_file(), filename
assert file1.is_file(), file1
assert file2.is_file(), file2
model = OnnxModel(filename)
wave1 = read_wavefile(file1, model.sample_rate)
wave2 = read_wavefile(file2, model.sample_rate)
if not model.normalize_samples:
wave1 = wave1 * 32768
wave2 = wave2 * 32768
features1 = compute_features(wave1, model.sample_rate)
features2 = compute_features(wave2, model.sample_rate)
if model.feature_normalize_type == "global-mean":
features1 -= features1.mean(axis=0, keepdims=True)
features2 -= features2.mean(axis=0, keepdims=True)
output1 = model(features1)
output2 = model(features2)
similarity = np.dot(output1, output2) / (norm(output1) * norm(output2))
print(f"similarity in the range [0-1]: {similarity}")
if __name__ == "__main__":
main()
... ...
... ... @@ -124,7 +124,7 @@ def main():
# all models from wespeaker expect input samples in the range
# [-32768, 32767]
normalize_features = 0
normalize_samples = 0
meta_data = {
"framework": "wespeaker",
... ... @@ -133,7 +133,7 @@ def main():
"comment": comment,
"sample_rate": sample_rate,
"output_dim": output_dim,
"normalize_features": normalize_features,
"normalize_samples": normalize_samples,
}
print(meta_data)
add_meta_data(filename=str(model), meta_data=meta_data)
... ...
... ... @@ -3,7 +3,7 @@
"""
This script computes speaker similarity score in the range [0-1]
of two wave files using a speaker recognition model.
of two wave files using a speaker embedding model.
"""
import argparse
import wave
... ... @@ -54,8 +54,6 @@ def read_wavefile(filename, expected_sample_rate: int = 16000) -> np.ndarray:
"""
filename = str(filename)
with wave.open(filename) as f:
# Note: If wave_file_sample_rate is different from
# recognizer.sample_rate, we will do resampling inside sherpa-ncnn
wave_file_sample_rate = f.getframerate()
assert wave_file_sample_rate == expected_sample_rate, (
wave_file_sample_rate,
... ... @@ -104,7 +102,7 @@ class OnnxModel:
):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 4
session_opts.intra_op_num_threads = 1
self.session_opts = session_opts
... ... @@ -114,7 +112,7 @@ class OnnxModel:
)
meta = self.model.get_modelmeta().custom_metadata_map
self.normalize_features = int(meta["normalize_features"])
self.normalize_samples = int(meta["normalize_samples"])
self.sample_rate = int(meta["sample_rate"])
self.output_dim = int(meta["output_dim"])
... ... @@ -151,7 +149,7 @@ def main():
wave1 = read_wavefile(file1, model.sample_rate)
wave2 = read_wavefile(file2, model.sample_rate)
if not model.normalize_features:
if not model.normalize_samples:
wave1 = wave1 * 32768
wave2 = wave2 * 32768
... ... @@ -161,8 +159,6 @@ def main():
output1 = model(features1)
output2 = model(features2)
print(output1.shape)
print(output2.shape)
similarity = np.dot(output1, output2) / (norm(output1) * norm(output2))
print(f"similarity in the range [0-1]: {similarity}")
... ...
... ... @@ -27,7 +27,7 @@ class SpeakerEmbeddingExtractorWeSpeakerImpl
FeatureExtractorConfig feat_config;
auto meta_data = model_.GetMetaData();
feat_config.sampling_rate = meta_data.sample_rate;
feat_config.normalize_samples = meta_data.normalize_features;
feat_config.normalize_samples = meta_data.normalize_samples;
return std::make_unique<OnlineStream>(feat_config);
}
... ...
... ... @@ -12,7 +12,7 @@ namespace sherpa_onnx {
struct SpeakerEmbeddingExtractorWeSpeakerModelMetaData {
int32_t output_dim = 0;
int32_t sample_rate = 0;
int32_t normalize_features = 0;
int32_t normalize_samples = 0;
std::string language;
};
... ...
... ... @@ -61,8 +61,8 @@ class SpeakerEmbeddingExtractorWeSpeakerModel::Impl {
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
SHERPA_ONNX_READ_META_DATA(meta_data_.output_dim, "output_dim");
SHERPA_ONNX_READ_META_DATA(meta_data_.sample_rate, "sample_rate");
SHERPA_ONNX_READ_META_DATA(meta_data_.normalize_features,
"normalize_features");
SHERPA_ONNX_READ_META_DATA(meta_data_.normalize_samples,
"normalize_samples");
SHERPA_ONNX_READ_META_DATA_STR(meta_data_.language, "language");
std::string framework;
... ...